Genome-wide selection in soybeans and optimization of phenotyping for grain yield

Detalhes bibliográficos
Autor(a) principal: Matei, Gilvani
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/3162
Resumo: Em um programa de melhoramento genético varios fatores influenciam na seleção de cultivares, basicamente pelo elevado número de genótipos em avaliação e pela reduzida capacidade experimental em fases iniciais do programa. Nesse contexto, o presente trabalho foi dividido em quatro partes. O primeiro estudo objetivou identificar locais chaves para avaliação e seleção de genótipos de soja nas nas macrorregiões 1 (M1) e 2 (M2), em gerações com pouca disponibilidade de semente. O conjunto de dados consistiu em 22 genótipos de soja cultivados em 23 locais por 3 anos. As análises GGL + GGE e G vs. GE foram usadas. As localidades Chapada-RS e Maracaju-MS foram os locais mais representativos e discriminantes macrorregiões 1 e 2, respectivamente. A identificação das localidades chave é fundamental para a avaliação, onde o número de locais de ensaio pode se resumir a um único local por macrorregião sojícola. O segundo estudo teve como objetivo avaliar a precisão experimental de diferentes métodos de análise estatística para ensaios com elevado número de genótipos de soja. Foram usados dados de produtividade de grãos de 324 genótipos de soja, avaliados em 6 repetições. Os dados foram analisados considerando os delineamentos de blocos ao acaso, látice triplo e uso do método de Papadakis. Os indicadores de precisão experimental do método de Papadakis são mais favoráveis, quando comparados com os delineamentos de blocos ao acaso e látice triplo. Pode-se usar duas repetições e analisar os dados, usando o delineamento de blocos completamente casualizados ou método Papadakis, sem redução da precisão experimental. No terceiro estudo foi avaliado o desempenho produtivo, a adaptabilidade e a estabilidade de cultivares modernas de soja, em ensaios multiambientes. Foram avaliados 46 cultivares em oito ambientes, nas microrregiões de adaptação 102, 201 e 202, na safra 2014/2015. Ocorreu interação genótipo x ambiente complexa, com alterações do ranqueamento de cultivares entre os locais. Dentre os genótipos avaliados a cultivar NA 5909 RG, parental das RILs no ensaio GWS, esteve presente entre genótipos de maiores médias produtivas, apresentando também elevada adaptabilidade e estabilidade. O quarto estudo teve três objetivos: avaliar a precisão da SG na soja; identificar o efeito da estrutura intrapopulação na precisão da seleção genômica; e, comparar a eficiência da seleção fenotípica e genômica na soja. Foi utilizado o modelo BayesB com validação cruzada para dados fenótipicos e genótipicos de 324 genótipos de soja. Avaliou-se a precisão do GS para caracteres fenotípicos com dados genotípicos de 5403 marcadores SNPs. Os resultados indicaram que a precisão genotípica foi semelhante, considerando, ou não, a estrutura da população. Se observou que a estrutura da população não afetou significativamente a precisão dos modelos para os caracteres avaliados. Constatou-se que com esta metodologia torna-se possível reduzir pela metade o tempo de seleção e aumentar a eficiência de seleção em 123% para produtividade de grãos.
id UTFPR-12_5efc17098429c84c811f1a8b94dc75ea
oai_identifier_str oai:repositorio.utfpr.edu.br:1/3162
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2018-05-21T16:12:36Z2018-05-21T16:12:36Z2017-12-12MATEI, Gilvani. Genome-wide selection in soybeans and optimization of phenotyping for grain yield. 2017. 101 f. Tese (Doutorado em Agronomia) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2017.http://repositorio.utfpr.edu.br/jspui/handle/1/3162Em um programa de melhoramento genético varios fatores influenciam na seleção de cultivares, basicamente pelo elevado número de genótipos em avaliação e pela reduzida capacidade experimental em fases iniciais do programa. Nesse contexto, o presente trabalho foi dividido em quatro partes. O primeiro estudo objetivou identificar locais chaves para avaliação e seleção de genótipos de soja nas nas macrorregiões 1 (M1) e 2 (M2), em gerações com pouca disponibilidade de semente. O conjunto de dados consistiu em 22 genótipos de soja cultivados em 23 locais por 3 anos. As análises GGL + GGE e G vs. GE foram usadas. As localidades Chapada-RS e Maracaju-MS foram os locais mais representativos e discriminantes macrorregiões 1 e 2, respectivamente. A identificação das localidades chave é fundamental para a avaliação, onde o número de locais de ensaio pode se resumir a um único local por macrorregião sojícola. O segundo estudo teve como objetivo avaliar a precisão experimental de diferentes métodos de análise estatística para ensaios com elevado número de genótipos de soja. Foram usados dados de produtividade de grãos de 324 genótipos de soja, avaliados em 6 repetições. Os dados foram analisados considerando os delineamentos de blocos ao acaso, látice triplo e uso do método de Papadakis. Os indicadores de precisão experimental do método de Papadakis são mais favoráveis, quando comparados com os delineamentos de blocos ao acaso e látice triplo. Pode-se usar duas repetições e analisar os dados, usando o delineamento de blocos completamente casualizados ou método Papadakis, sem redução da precisão experimental. No terceiro estudo foi avaliado o desempenho produtivo, a adaptabilidade e a estabilidade de cultivares modernas de soja, em ensaios multiambientes. Foram avaliados 46 cultivares em oito ambientes, nas microrregiões de adaptação 102, 201 e 202, na safra 2014/2015. Ocorreu interação genótipo x ambiente complexa, com alterações do ranqueamento de cultivares entre os locais. Dentre os genótipos avaliados a cultivar NA 5909 RG, parental das RILs no ensaio GWS, esteve presente entre genótipos de maiores médias produtivas, apresentando também elevada adaptabilidade e estabilidade. O quarto estudo teve três objetivos: avaliar a precisão da SG na soja; identificar o efeito da estrutura intrapopulação na precisão da seleção genômica; e, comparar a eficiência da seleção fenotípica e genômica na soja. Foi utilizado o modelo BayesB com validação cruzada para dados fenótipicos e genótipicos de 324 genótipos de soja. Avaliou-se a precisão do GS para caracteres fenotípicos com dados genotípicos de 5403 marcadores SNPs. Os resultados indicaram que a precisão genotípica foi semelhante, considerando, ou não, a estrutura da população. Se observou que a estrutura da população não afetou significativamente a precisão dos modelos para os caracteres avaliados. Constatou-se que com esta metodologia torna-se possível reduzir pela metade o tempo de seleção e aumentar a eficiência de seleção em 123% para produtividade de grãos.In a breeding program, several factors influence the selection of cultivars, mainly due to the high number of genotypes under evaluation and the reduced experimental capacity in the initial phases of the program. In this context, the present study was divided into four parts. The first one aimed to identify the core locations for evaluation and selection of soybean genotypes in the macro-regions 1 (M1) and 2 (M2), in generations with low seed availability. The data set consisted of 22 soybean genotypes grown in 23 sites for three years. The GGL + GGE and G analyses versus the GE analysis were used. The locations Chapada-RS and Maracaju-MS were the most representative sites and discriminant macro-regions 1 and 2, respectively. Identification of the core location is fundamental to evaluation, since it is where the number of test sites can be summarized to a single site by soybean growing macro-region. The second study aimed to evaluate the experimental accuracy of different statistical methods used to analyze the assays with large numbers of soybean genotypes. The grain yield data from 324 soybean genotypes, evaluated in six replicates, were used. The data were analyzed by using the randomized block design, triple lattice design, and Papadakis method. The experimental accuracy indicators of the Papadakis method were more favorable when compared to those of the randomized block and triple lattice designs. Two replicates could be used when analyzing the data without reducing experimental accuracy: a randomized complete block design or the Papadakis method. In the third study, the productive performance, adaptability, and stability of modern soybean cultivars were evaluated in multi-environment assays. A total of 46 cultivars were evaluated in eight environments, in the adaptation micro-regions 102, 201, and 202, during the 2014/2015 harvest. Genotype × complex environment interactions occurred with changes in the ranking of cultivars between the sites. Among the genotypes evaluated, the cultivar NA 5909 RG, parental to the RILs in the genome-wide selection (GWS) assay, was considered to be among the genotypes with higher mean productivities, and it also showed high adaptability and stability. The fourth study had three objectives: to evaluate the accuracy of genomic selection in soybean, to identify the effect of intra-population structure on the accuracy of genomic selection, and to compare the efficiencies of the phenotypic and genomic selections in soybean. The BayesB model with cross validation was used for analyzing the phenotype data from the 324 soybean genotypes. The accuracy of GS for phenotypic characters with genotypic data of 5403 SNP molecular markers was also evaluated. The results indicated that the genotypic accuracy was similar, irrespective of consideration of the population structure. It was observed that the population structure did not significantly affect the accuracy of the models for the traits evaluated. It was verified that with this methodology it is possible to halve the selection time and increase the selection efficiency by 123% for grain yield.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Tecnológica Federal do ParanáPato BrancoPrograma de Pós-Graduação em AgronomiaUTFPRBrasilCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETALFitotecniaPlantas - Melhoramento genéticoMarcadores genéticosProdutividade agrícolaPlant breedingGenetic markersAgricultural productivityGenome-wide selection in soybeans and optimization of phenotyping for grain yieldSeleção genômica ampla em soja e otimização da fenotipagem para produtividade de grãosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPato BrancoBenin, Giovanihttp://lattes.cnpq.br/8634180310157308Perea, Graciela Maria SalasGodoi, Cláudio Roberto Cardoso deToledo, Jose Francisco Ferraz deShannon, GroverBenin, Giovanihttp://lattes.cnpq.br/9566870721103878Matei, Gilvaniinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRORIGINALPB_PPGAG_D_Matei, Giovani_2017.pdfPB_PPGAG_D_Matei, Giovani_2017.pdfapplication/pdf2933202http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/1/PB_PPGAG_D_Matei%2c%20Giovani_2017.pdf477e75bc108f3ff610866be71611dadcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPB_PPGAG_D_Matei, Giovani_2017.pdf.txtPB_PPGAG_D_Matei, Giovani_2017.pdf.txtExtracted texttext/plain182873http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/3/PB_PPGAG_D_Matei%2c%20Giovani_2017.pdf.txtd04467220e298526a9c23e5e012c6a4aMD53THUMBNAILPB_PPGAG_D_Matei, Giovani_2017.pdf.jpgPB_PPGAG_D_Matei, Giovani_2017.pdf.jpgGenerated Thumbnailimage/jpeg957http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/4/PB_PPGAG_D_Matei%2c%20Giovani_2017.pdf.jpg5236f38619ae77f31ba8d1a45e2e1cb7MD541/31622018-05-21 13:12:36.368oai:repositorio.utfpr.edu.br:1/3162Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2018-05-21T16:12:36Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Genome-wide selection in soybeans and optimization of phenotyping for grain yield
dc.title.alternative.pt_BR.fl_str_mv Seleção genômica ampla em soja e otimização da fenotipagem para produtividade de grãos
title Genome-wide selection in soybeans and optimization of phenotyping for grain yield
spellingShingle Genome-wide selection in soybeans and optimization of phenotyping for grain yield
Matei, Gilvani
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
Plantas - Melhoramento genético
Marcadores genéticos
Produtividade agrícola
Plant breeding
Genetic markers
Agricultural productivity
Fitotecnia
title_short Genome-wide selection in soybeans and optimization of phenotyping for grain yield
title_full Genome-wide selection in soybeans and optimization of phenotyping for grain yield
title_fullStr Genome-wide selection in soybeans and optimization of phenotyping for grain yield
title_full_unstemmed Genome-wide selection in soybeans and optimization of phenotyping for grain yield
title_sort Genome-wide selection in soybeans and optimization of phenotyping for grain yield
author Matei, Gilvani
author_facet Matei, Gilvani
author_role author
dc.contributor.advisor1.fl_str_mv Benin, Giovani
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8634180310157308
dc.contributor.referee1.fl_str_mv Perea, Graciela Maria Salas
dc.contributor.referee2.fl_str_mv Godoi, Cláudio Roberto Cardoso de
dc.contributor.referee3.fl_str_mv Toledo, Jose Francisco Ferraz de
dc.contributor.referee4.fl_str_mv Shannon, Grover
dc.contributor.referee5.fl_str_mv Benin, Giovani
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9566870721103878
dc.contributor.author.fl_str_mv Matei, Gilvani
contributor_str_mv Benin, Giovani
Perea, Graciela Maria Salas
Godoi, Cláudio Roberto Cardoso de
Toledo, Jose Francisco Ferraz de
Shannon, Grover
Benin, Giovani
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
topic CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
Plantas - Melhoramento genético
Marcadores genéticos
Produtividade agrícola
Plant breeding
Genetic markers
Agricultural productivity
Fitotecnia
dc.subject.por.fl_str_mv Plantas - Melhoramento genético
Marcadores genéticos
Produtividade agrícola
Plant breeding
Genetic markers
Agricultural productivity
dc.subject.capes.pt_BR.fl_str_mv Fitotecnia
description Em um programa de melhoramento genético varios fatores influenciam na seleção de cultivares, basicamente pelo elevado número de genótipos em avaliação e pela reduzida capacidade experimental em fases iniciais do programa. Nesse contexto, o presente trabalho foi dividido em quatro partes. O primeiro estudo objetivou identificar locais chaves para avaliação e seleção de genótipos de soja nas nas macrorregiões 1 (M1) e 2 (M2), em gerações com pouca disponibilidade de semente. O conjunto de dados consistiu em 22 genótipos de soja cultivados em 23 locais por 3 anos. As análises GGL + GGE e G vs. GE foram usadas. As localidades Chapada-RS e Maracaju-MS foram os locais mais representativos e discriminantes macrorregiões 1 e 2, respectivamente. A identificação das localidades chave é fundamental para a avaliação, onde o número de locais de ensaio pode se resumir a um único local por macrorregião sojícola. O segundo estudo teve como objetivo avaliar a precisão experimental de diferentes métodos de análise estatística para ensaios com elevado número de genótipos de soja. Foram usados dados de produtividade de grãos de 324 genótipos de soja, avaliados em 6 repetições. Os dados foram analisados considerando os delineamentos de blocos ao acaso, látice triplo e uso do método de Papadakis. Os indicadores de precisão experimental do método de Papadakis são mais favoráveis, quando comparados com os delineamentos de blocos ao acaso e látice triplo. Pode-se usar duas repetições e analisar os dados, usando o delineamento de blocos completamente casualizados ou método Papadakis, sem redução da precisão experimental. No terceiro estudo foi avaliado o desempenho produtivo, a adaptabilidade e a estabilidade de cultivares modernas de soja, em ensaios multiambientes. Foram avaliados 46 cultivares em oito ambientes, nas microrregiões de adaptação 102, 201 e 202, na safra 2014/2015. Ocorreu interação genótipo x ambiente complexa, com alterações do ranqueamento de cultivares entre os locais. Dentre os genótipos avaliados a cultivar NA 5909 RG, parental das RILs no ensaio GWS, esteve presente entre genótipos de maiores médias produtivas, apresentando também elevada adaptabilidade e estabilidade. O quarto estudo teve três objetivos: avaliar a precisão da SG na soja; identificar o efeito da estrutura intrapopulação na precisão da seleção genômica; e, comparar a eficiência da seleção fenotípica e genômica na soja. Foi utilizado o modelo BayesB com validação cruzada para dados fenótipicos e genótipicos de 324 genótipos de soja. Avaliou-se a precisão do GS para caracteres fenotípicos com dados genotípicos de 5403 marcadores SNPs. Os resultados indicaram que a precisão genotípica foi semelhante, considerando, ou não, a estrutura da população. Se observou que a estrutura da população não afetou significativamente a precisão dos modelos para os caracteres avaliados. Constatou-se que com esta metodologia torna-se possível reduzir pela metade o tempo de seleção e aumentar a eficiência de seleção em 123% para produtividade de grãos.
publishDate 2017
dc.date.issued.fl_str_mv 2017-12-12
dc.date.accessioned.fl_str_mv 2018-05-21T16:12:36Z
dc.date.available.fl_str_mv 2018-05-21T16:12:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MATEI, Gilvani. Genome-wide selection in soybeans and optimization of phenotyping for grain yield. 2017. 101 f. Tese (Doutorado em Agronomia) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/3162
identifier_str_mv MATEI, Gilvani. Genome-wide selection in soybeans and optimization of phenotyping for grain yield. 2017. 101 f. Tese (Doutorado em Agronomia) - Universidade Tecnológica Federal do Paraná, Pato Branco, 2017.
url http://repositorio.utfpr.edu.br/jspui/handle/1/3162
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Pato Branco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Pato Branco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/1/PB_PPGAG_D_Matei%2c%20Giovani_2017.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/2/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/3/PB_PPGAG_D_Matei%2c%20Giovani_2017.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/3162/4/PB_PPGAG_D_Matei%2c%20Giovani_2017.pdf.jpg
bitstream.checksum.fl_str_mv 477e75bc108f3ff610866be71611dadc
8a4605be74aa9ea9d79846c1fba20a33
d04467220e298526a9c23e5e012c6a4a
5236f38619ae77f31ba8d1a45e2e1cb7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923126708535296