Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
Texto Completo: | http://repositorio.utfpr.edu.br/jspui/handle/1/30145 |
Resumo: | Chia extract has been increasingly used in the food industry since it is rich in bioactive compounds, such as fatty acids, omega-3 fatty, antioxidants, proteins, vitamins, minerals, and dietary fiber. This extract can be obtained by using conventional extraction techniques (e.g., pressure) on chia seeds. Unfortunately, such techniques are insufficient to access all chemical components present in the seeds matrix, producing a by-product named chia cake that is usually discarded. On the other hand, since chia cake contains significant nutraceutical properties, it is still viable and beneficial to perform extractions of chia extract from chia cake. A typical objective of an extraction is to gather a high mass yield of chia (cake) extract. Since the extraction process is complex and expensive (e.g., in terms of laboratory resources), there is an increasing interest in determining the mass yield based on variables of the extraction like temperature, extraction time, and solvent. In this paper, we study the viability of applying traditional fuzzy inference systems (e.g., based on Mamdani's method) and adaptive neuro- fuzzy inference systems (ANFIS) for this problem. We propose a fuzzy inference architecture that predicts the mass yield of chia cake extract based on temperature, extraction time, and solvent. Our architecture makes use of fuzzy sets and fuzzy rules in the context of fuzzy inference methods. To design them, we create and use a dataset that contains the mass yield of real extractions conducted in the laboratory under different configurations. Hence, it represents another contribution of this paper and serves as the needed foundation to build the proposed architecture. Further, we conduct a performance evaluation to choose the fuzzy inference system that better fits the architecture. Based on our analysis, ANFIS was the best inference method since it delivered the lesser errors and greater correlations between predicted and observed values. We conclude that fuzzy inference systems are powerful tools for the food industry since they can capture the intrinsic imprecise nature of the extraction process, model the existing non-linear relations of the variables, and represent the expert domain knowledge. |
id |
UTFPR-12_6b67ed81dc4510b57a692992d2b1d6b5 |
---|---|
oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/30145 |
network_acronym_str |
UTFPR-12 |
network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
repository_id_str |
|
spelling |
2022-11-22T18:42:08Z2022-11-22T18:42:08Z2021-11-06JOHANN, Gracielle, SANTOS, Casi Santos dos, MONTANHER, Paula Fernandes, OLIVEIRA, Rafael Alves Paes de, CARNIEL, Anderson Chaves. Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494541.http://repositorio.utfpr.edu.br/jspui/handle/1/3014510.1109/FUZZ45933.2021.9494541Chia extract has been increasingly used in the food industry since it is rich in bioactive compounds, such as fatty acids, omega-3 fatty, antioxidants, proteins, vitamins, minerals, and dietary fiber. This extract can be obtained by using conventional extraction techniques (e.g., pressure) on chia seeds. Unfortunately, such techniques are insufficient to access all chemical components present in the seeds matrix, producing a by-product named chia cake that is usually discarded. On the other hand, since chia cake contains significant nutraceutical properties, it is still viable and beneficial to perform extractions of chia extract from chia cake. A typical objective of an extraction is to gather a high mass yield of chia (cake) extract. Since the extraction process is complex and expensive (e.g., in terms of laboratory resources), there is an increasing interest in determining the mass yield based on variables of the extraction like temperature, extraction time, and solvent. In this paper, we study the viability of applying traditional fuzzy inference systems (e.g., based on Mamdani's method) and adaptive neuro- fuzzy inference systems (ANFIS) for this problem. We propose a fuzzy inference architecture that predicts the mass yield of chia cake extract based on temperature, extraction time, and solvent. Our architecture makes use of fuzzy sets and fuzzy rules in the context of fuzzy inference methods. To design them, we create and use a dataset that contains the mass yield of real extractions conducted in the laboratory under different configurations. Hence, it represents another contribution of this paper and serves as the needed foundation to build the proposed architecture. Further, we conduct a performance evaluation to choose the fuzzy inference system that better fits the architecture. Based on our analysis, ANFIS was the best inference method since it delivered the lesser errors and greater correlations between predicted and observed values. We conclude that fuzzy inference systems are powerful tools for the food industry since they can capture the intrinsic imprecise nature of the extraction process, model the existing non-linear relations of the variables, and represent the expert domain knowledge.engIEEE International Conference on Fuzzy Systems (FUZZ-IEEE)https://ieeexplore.ieee.org/document/9494541/authors#authorsAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMineração de dados (Computação)Sistemas difusosAlimentos - IndústriaData miningFuzzy SystemsFood industry and tradeAplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massaApplying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yieldinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectDois VizinhosBrasil2021Johann, GracielleSantos, Casi Santos dosMontanher, Paula FernandesOliveira, Rafael Alves Paes deCarniel, Anderson Chavesreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/2/license_rdf84a900c9dd4b2a10095a94649e1ce116MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/3/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD53ORIGINALinferenciafuzzyextratochia.pdfinferenciafuzzyextratochia.pdfapplication/pdf926842http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/1/inferenciafuzzyextratochia.pdfabc0c1de67ff91c3a93605d19bf7c73bMD51TEXTinferenciafuzzyextratochia.pdf.txtinferenciafuzzyextratochia.pdf.txtExtracted texttext/plain36006http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/4/inferenciafuzzyextratochia.pdf.txt948a4fbbaa50cafe5c5639fc087b529eMD54THUMBNAILinferenciafuzzyextratochia.pdf.jpginferenciafuzzyextratochia.pdf.jpgGenerated Thumbnailimage/jpeg1372http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/5/inferenciafuzzyextratochia.pdf.jpgd145dcdecf5df2c872e2643cab87ba70MD551/301452022-11-23 04:07:37.941oai:repositorio.utfpr.edu.br:1/30145TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2022-11-23T06:07:37Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
dc.title.pt_BR.fl_str_mv |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa |
dc.title.alternative.pt_BR.fl_str_mv |
Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield |
title |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa |
spellingShingle |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa Johann, Gracielle CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Mineração de dados (Computação) Sistemas difusos Alimentos - Indústria Data mining Fuzzy Systems Food industry and trade |
title_short |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa |
title_full |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa |
title_fullStr |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa |
title_full_unstemmed |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa |
title_sort |
Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa |
author |
Johann, Gracielle |
author_facet |
Johann, Gracielle Santos, Casi Santos dos Montanher, Paula Fernandes Oliveira, Rafael Alves Paes de Carniel, Anderson Chaves |
author_role |
author |
author2 |
Santos, Casi Santos dos Montanher, Paula Fernandes Oliveira, Rafael Alves Paes de Carniel, Anderson Chaves |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Johann, Gracielle Santos, Casi Santos dos Montanher, Paula Fernandes Oliveira, Rafael Alves Paes de Carniel, Anderson Chaves |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Mineração de dados (Computação) Sistemas difusos Alimentos - Indústria Data mining Fuzzy Systems Food industry and trade |
dc.subject.por.fl_str_mv |
Mineração de dados (Computação) Sistemas difusos Alimentos - Indústria Data mining Fuzzy Systems Food industry and trade |
description |
Chia extract has been increasingly used in the food industry since it is rich in bioactive compounds, such as fatty acids, omega-3 fatty, antioxidants, proteins, vitamins, minerals, and dietary fiber. This extract can be obtained by using conventional extraction techniques (e.g., pressure) on chia seeds. Unfortunately, such techniques are insufficient to access all chemical components present in the seeds matrix, producing a by-product named chia cake that is usually discarded. On the other hand, since chia cake contains significant nutraceutical properties, it is still viable and beneficial to perform extractions of chia extract from chia cake. A typical objective of an extraction is to gather a high mass yield of chia (cake) extract. Since the extraction process is complex and expensive (e.g., in terms of laboratory resources), there is an increasing interest in determining the mass yield based on variables of the extraction like temperature, extraction time, and solvent. In this paper, we study the viability of applying traditional fuzzy inference systems (e.g., based on Mamdani's method) and adaptive neuro- fuzzy inference systems (ANFIS) for this problem. We propose a fuzzy inference architecture that predicts the mass yield of chia cake extract based on temperature, extraction time, and solvent. Our architecture makes use of fuzzy sets and fuzzy rules in the context of fuzzy inference methods. To design them, we create and use a dataset that contains the mass yield of real extractions conducted in the laboratory under different configurations. Hence, it represents another contribution of this paper and serves as the needed foundation to build the proposed architecture. Further, we conduct a performance evaluation to choose the fuzzy inference system that better fits the architecture. Based on our analysis, ANFIS was the best inference method since it delivered the lesser errors and greater correlations between predicted and observed values. We conclude that fuzzy inference systems are powerful tools for the food industry since they can capture the intrinsic imprecise nature of the extraction process, model the existing non-linear relations of the variables, and represent the expert domain knowledge. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-11-06 |
dc.date.accessioned.fl_str_mv |
2022-11-22T18:42:08Z |
dc.date.available.fl_str_mv |
2022-11-22T18:42:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
JOHANN, Gracielle, SANTOS, Casi Santos dos, MONTANHER, Paula Fernandes, OLIVEIRA, Rafael Alves Paes de, CARNIEL, Anderson Chaves. Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494541. |
dc.identifier.uri.fl_str_mv |
http://repositorio.utfpr.edu.br/jspui/handle/1/30145 |
dc.identifier.doi.pt_BR.fl_str_mv |
10.1109/FUZZ45933.2021.9494541 |
identifier_str_mv |
JOHANN, Gracielle, SANTOS, Casi Santos dos, MONTANHER, Paula Fernandes, OLIVEIRA, Rafael Alves Paes de, CARNIEL, Anderson Chaves. Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494541. 10.1109/FUZZ45933.2021.9494541 |
url |
http://repositorio.utfpr.edu.br/jspui/handle/1/30145 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
dc.relation.uri.pt_BR.fl_str_mv |
https://ieeexplore.ieee.org/document/9494541/authors#authors |
dc.rights.driver.fl_str_mv |
Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Dois Vizinhos |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Dois Vizinhos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
instacron_str |
UTFPR |
institution |
UTFPR |
reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
bitstream.url.fl_str_mv |
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/2/license_rdf http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/3/license.txt http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/1/inferenciafuzzyextratochia.pdf http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/4/inferenciafuzzyextratochia.pdf.txt http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/5/inferenciafuzzyextratochia.pdf.jpg |
bitstream.checksum.fl_str_mv |
84a900c9dd4b2a10095a94649e1ce116 b9d82215ab23456fa2d8b49c5df1b95b abc0c1de67ff91c3a93605d19bf7c73b 948a4fbbaa50cafe5c5639fc087b529e d145dcdecf5df2c872e2643cab87ba70 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
repository.mail.fl_str_mv |
|
_version_ |
1805923172928716800 |