Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa

Detalhes bibliográficos
Autor(a) principal: Johann, Gracielle
Data de Publicação: 2021
Outros Autores: Santos, Casi Santos dos, Montanher, Paula Fernandes, Oliveira, Rafael Alves Paes de, Carniel, Anderson Chaves
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/30145
Resumo: Chia extract has been increasingly used in the food industry since it is rich in bioactive compounds, such as fatty acids, omega-3 fatty, antioxidants, proteins, vitamins, minerals, and dietary fiber. This extract can be obtained by using conventional extraction techniques (e.g., pressure) on chia seeds. Unfortunately, such techniques are insufficient to access all chemical components present in the seeds matrix, producing a by-product named chia cake that is usually discarded. On the other hand, since chia cake contains significant nutraceutical properties, it is still viable and beneficial to perform extractions of chia extract from chia cake. A typical objective of an extraction is to gather a high mass yield of chia (cake) extract. Since the extraction process is complex and expensive (e.g., in terms of laboratory resources), there is an increasing interest in determining the mass yield based on variables of the extraction like temperature, extraction time, and solvent. In this paper, we study the viability of applying traditional fuzzy inference systems (e.g., based on Mamdani's method) and adaptive neuro- fuzzy inference systems (ANFIS) for this problem. We propose a fuzzy inference architecture that predicts the mass yield of chia cake extract based on temperature, extraction time, and solvent. Our architecture makes use of fuzzy sets and fuzzy rules in the context of fuzzy inference methods. To design them, we create and use a dataset that contains the mass yield of real extractions conducted in the laboratory under different configurations. Hence, it represents another contribution of this paper and serves as the needed foundation to build the proposed architecture. Further, we conduct a performance evaluation to choose the fuzzy inference system that better fits the architecture. Based on our analysis, ANFIS was the best inference method since it delivered the lesser errors and greater correlations between predicted and observed values. We conclude that fuzzy inference systems are powerful tools for the food industry since they can capture the intrinsic imprecise nature of the extraction process, model the existing non-linear relations of the variables, and represent the expert domain knowledge.
id UTFPR-12_6b67ed81dc4510b57a692992d2b1d6b5
oai_identifier_str oai:repositorio.utfpr.edu.br:1/30145
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2022-11-22T18:42:08Z2022-11-22T18:42:08Z2021-11-06JOHANN, Gracielle, SANTOS, Casi Santos dos, MONTANHER, Paula Fernandes, OLIVEIRA, Rafael Alves Paes de, CARNIEL, Anderson Chaves. Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494541.http://repositorio.utfpr.edu.br/jspui/handle/1/3014510.1109/FUZZ45933.2021.9494541Chia extract has been increasingly used in the food industry since it is rich in bioactive compounds, such as fatty acids, omega-3 fatty, antioxidants, proteins, vitamins, minerals, and dietary fiber. This extract can be obtained by using conventional extraction techniques (e.g., pressure) on chia seeds. Unfortunately, such techniques are insufficient to access all chemical components present in the seeds matrix, producing a by-product named chia cake that is usually discarded. On the other hand, since chia cake contains significant nutraceutical properties, it is still viable and beneficial to perform extractions of chia extract from chia cake. A typical objective of an extraction is to gather a high mass yield of chia (cake) extract. Since the extraction process is complex and expensive (e.g., in terms of laboratory resources), there is an increasing interest in determining the mass yield based on variables of the extraction like temperature, extraction time, and solvent. In this paper, we study the viability of applying traditional fuzzy inference systems (e.g., based on Mamdani's method) and adaptive neuro- fuzzy inference systems (ANFIS) for this problem. We propose a fuzzy inference architecture that predicts the mass yield of chia cake extract based on temperature, extraction time, and solvent. Our architecture makes use of fuzzy sets and fuzzy rules in the context of fuzzy inference methods. To design them, we create and use a dataset that contains the mass yield of real extractions conducted in the laboratory under different configurations. Hence, it represents another contribution of this paper and serves as the needed foundation to build the proposed architecture. Further, we conduct a performance evaluation to choose the fuzzy inference system that better fits the architecture. Based on our analysis, ANFIS was the best inference method since it delivered the lesser errors and greater correlations between predicted and observed values. We conclude that fuzzy inference systems are powerful tools for the food industry since they can capture the intrinsic imprecise nature of the extraction process, model the existing non-linear relations of the variables, and represent the expert domain knowledge.engIEEE International Conference on Fuzzy Systems (FUZZ-IEEE)https://ieeexplore.ieee.org/document/9494541/authors#authorsAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMineração de dados (Computação)Sistemas difusosAlimentos - IndústriaData miningFuzzy SystemsFood industry and tradeAplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massaApplying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yieldinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectDois VizinhosBrasil2021Johann, GracielleSantos, Casi Santos dosMontanher, Paula FernandesOliveira, Rafael Alves Paes deCarniel, Anderson Chavesreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/2/license_rdf84a900c9dd4b2a10095a94649e1ce116MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/3/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD53ORIGINALinferenciafuzzyextratochia.pdfinferenciafuzzyextratochia.pdfapplication/pdf926842http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/1/inferenciafuzzyextratochia.pdfabc0c1de67ff91c3a93605d19bf7c73bMD51TEXTinferenciafuzzyextratochia.pdf.txtinferenciafuzzyextratochia.pdf.txtExtracted texttext/plain36006http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/4/inferenciafuzzyextratochia.pdf.txt948a4fbbaa50cafe5c5639fc087b529eMD54THUMBNAILinferenciafuzzyextratochia.pdf.jpginferenciafuzzyextratochia.pdf.jpgGenerated Thumbnailimage/jpeg1372http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/5/inferenciafuzzyextratochia.pdf.jpgd145dcdecf5df2c872e2643cab87ba70MD551/301452022-11-23 04:07:37.941oai:repositorio.utfpr.edu.br:1/30145TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2022-11-23T06:07:37Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
dc.title.alternative.pt_BR.fl_str_mv Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield
title Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
spellingShingle Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
Johann, Gracielle
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Mineração de dados (Computação)
Sistemas difusos
Alimentos - Indústria
Data mining
Fuzzy Systems
Food industry and trade
title_short Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
title_full Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
title_fullStr Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
title_full_unstemmed Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
title_sort Aplicando sistemas de inferência fuzzy na extração de extrato de torta de chia: prevendo o rendimento de massa
author Johann, Gracielle
author_facet Johann, Gracielle
Santos, Casi Santos dos
Montanher, Paula Fernandes
Oliveira, Rafael Alves Paes de
Carniel, Anderson Chaves
author_role author
author2 Santos, Casi Santos dos
Montanher, Paula Fernandes
Oliveira, Rafael Alves Paes de
Carniel, Anderson Chaves
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Johann, Gracielle
Santos, Casi Santos dos
Montanher, Paula Fernandes
Oliveira, Rafael Alves Paes de
Carniel, Anderson Chaves
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Mineração de dados (Computação)
Sistemas difusos
Alimentos - Indústria
Data mining
Fuzzy Systems
Food industry and trade
dc.subject.por.fl_str_mv Mineração de dados (Computação)
Sistemas difusos
Alimentos - Indústria
Data mining
Fuzzy Systems
Food industry and trade
description Chia extract has been increasingly used in the food industry since it is rich in bioactive compounds, such as fatty acids, omega-3 fatty, antioxidants, proteins, vitamins, minerals, and dietary fiber. This extract can be obtained by using conventional extraction techniques (e.g., pressure) on chia seeds. Unfortunately, such techniques are insufficient to access all chemical components present in the seeds matrix, producing a by-product named chia cake that is usually discarded. On the other hand, since chia cake contains significant nutraceutical properties, it is still viable and beneficial to perform extractions of chia extract from chia cake. A typical objective of an extraction is to gather a high mass yield of chia (cake) extract. Since the extraction process is complex and expensive (e.g., in terms of laboratory resources), there is an increasing interest in determining the mass yield based on variables of the extraction like temperature, extraction time, and solvent. In this paper, we study the viability of applying traditional fuzzy inference systems (e.g., based on Mamdani's method) and adaptive neuro- fuzzy inference systems (ANFIS) for this problem. We propose a fuzzy inference architecture that predicts the mass yield of chia cake extract based on temperature, extraction time, and solvent. Our architecture makes use of fuzzy sets and fuzzy rules in the context of fuzzy inference methods. To design them, we create and use a dataset that contains the mass yield of real extractions conducted in the laboratory under different configurations. Hence, it represents another contribution of this paper and serves as the needed foundation to build the proposed architecture. Further, we conduct a performance evaluation to choose the fuzzy inference system that better fits the architecture. Based on our analysis, ANFIS was the best inference method since it delivered the lesser errors and greater correlations between predicted and observed values. We conclude that fuzzy inference systems are powerful tools for the food industry since they can capture the intrinsic imprecise nature of the extraction process, model the existing non-linear relations of the variables, and represent the expert domain knowledge.
publishDate 2021
dc.date.issued.fl_str_mv 2021-11-06
dc.date.accessioned.fl_str_mv 2022-11-22T18:42:08Z
dc.date.available.fl_str_mv 2022-11-22T18:42:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.citation.fl_str_mv JOHANN, Gracielle, SANTOS, Casi Santos dos, MONTANHER, Paula Fernandes, OLIVEIRA, Rafael Alves Paes de, CARNIEL, Anderson Chaves. Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494541.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/30145
dc.identifier.doi.pt_BR.fl_str_mv 10.1109/FUZZ45933.2021.9494541
identifier_str_mv JOHANN, Gracielle, SANTOS, Casi Santos dos, MONTANHER, Paula Fernandes, OLIVEIRA, Rafael Alves Paes de, CARNIEL, Anderson Chaves. Applying fuzzy inference systems in the extraction of chia cake extract: predicting the mass yield. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494541.
10.1109/FUZZ45933.2021.9494541
url http://repositorio.utfpr.edu.br/jspui/handle/1/30145
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
dc.relation.uri.pt_BR.fl_str_mv https://ieeexplore.ieee.org/document/9494541/authors#authors
dc.rights.driver.fl_str_mv Attribution-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-sa/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Dois Vizinhos
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Dois Vizinhos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/2/license_rdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/3/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/1/inferenciafuzzyextratochia.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/4/inferenciafuzzyextratochia.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/30145/5/inferenciafuzzyextratochia.pdf.jpg
bitstream.checksum.fl_str_mv 84a900c9dd4b2a10095a94649e1ce116
b9d82215ab23456fa2d8b49c5df1b95b
abc0c1de67ff91c3a93605d19bf7c73b
948a4fbbaa50cafe5c5639fc087b529e
d145dcdecf5df2c872e2643cab87ba70
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923172928716800