Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)

Detalhes bibliográficos
Autor(a) principal: Cardoso, Samarone Jonathan
Data de Publicação: 2019
Outros Autores: Santana, Sergio da Silva
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/23953
Resumo: Este trabalho investiga o uso de SVM’s (Support Vector Machine) para reconhecimento de caracteres manuscritos maiúsculos do alfabeto latino. Utilizou-se para os experimentos dados off-line da base IRONOFF. Os dados foram tratados previamente pelas técnicas de pré-processamento por limiarização e bounding box. Para extração de características utilizou-se a concavidade e convexidade efetuando-se rotulação do pixel de fundo. Posteriormente foi aplicado o mecanismo de zoneamento perceptivo dividindo os caracteres em Z partes (z = 0, z = 4, z = 5 horizontal, z = 5 vertical e z = 7). Os dados foram divididos em conjuntos de treinamento e teste para a criação de SVM’s generalistas e especialistas. Para os experimentos foi utilizada a ferramenta WEKA. Foram aplicadas as configurações de kernel (linear, radial e sigmoid) nas SVM’s criando assim um total de 15 SVM’s generalistas e 390 especialistas. As SVM’s com configuração de kernel linear com os zoneamentos z = 5h e z = 5v obtiveram um melhor desempenho com médias de acerto de 94,4% e 94,7% respectivamente. Os resultados encontrados foram comparados com as Redes Neurais propostas por Aires em 2005, onde todos os resultados das SMV’s foram superiores as das RN’s. A maior diferença foi no zoneamento z = 5h onde as RN’s tiveram média de acerto de 82,4% e a SVM de 94,4% e a menor diferença foi no zoneamento z = 7 com médias de acertos de 88,9% e 94,1%, RN’s e SVM’s respectivamente.
id UTFPR-12_8d2198ce70046a4b394a1a0b94e797ed
oai_identifier_str oai:repositorio.utfpr.edu.br:1/23953
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2021-01-22T20:14:48Z2021-01-22T20:14:48Z2019-11-07CARDOSO, Samarone; SANTANA, Sergio. Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM). 2019. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.http://repositorio.utfpr.edu.br/jspui/handle/1/23953Este trabalho investiga o uso de SVM’s (Support Vector Machine) para reconhecimento de caracteres manuscritos maiúsculos do alfabeto latino. Utilizou-se para os experimentos dados off-line da base IRONOFF. Os dados foram tratados previamente pelas técnicas de pré-processamento por limiarização e bounding box. Para extração de características utilizou-se a concavidade e convexidade efetuando-se rotulação do pixel de fundo. Posteriormente foi aplicado o mecanismo de zoneamento perceptivo dividindo os caracteres em Z partes (z = 0, z = 4, z = 5 horizontal, z = 5 vertical e z = 7). Os dados foram divididos em conjuntos de treinamento e teste para a criação de SVM’s generalistas e especialistas. Para os experimentos foi utilizada a ferramenta WEKA. Foram aplicadas as configurações de kernel (linear, radial e sigmoid) nas SVM’s criando assim um total de 15 SVM’s generalistas e 390 especialistas. As SVM’s com configuração de kernel linear com os zoneamentos z = 5h e z = 5v obtiveram um melhor desempenho com médias de acerto de 94,4% e 94,7% respectivamente. Os resultados encontrados foram comparados com as Redes Neurais propostas por Aires em 2005, onde todos os resultados das SMV’s foram superiores as das RN’s. A maior diferença foi no zoneamento z = 5h onde as RN’s tiveram média de acerto de 82,4% e a SVM de 94,4% e a menor diferença foi no zoneamento z = 7 com médias de acertos de 88,9% e 94,1%, RN’s e SVM’s respectivamente.This work investigates the use of Support Vector Machine (SVM's) for recognition of uppercase handwritten characters of the Latin alphabet. The experiment made use of offline data from IRONOFF database. The data had already been gone through thresholding and bounding box preprocessing techniques. With regard to extraction of characteristics, concavity and convexity were obtained? detected? isolated? determined? observed? by labeling of the background pixel. Subsequently, the perceptual zoning mechanism was applied by dividing the characters into Z parts (z = 0, z = 4, z = 5 horizontal, z = 5 vertical and z = 7). The data was divided into training and testing sets to create generalist and expert SVMs. The experiments were performed through the use of the WEKA tool. Kernel configurations (linear, radial and sigmoid) were applied to SVMs thus creating a total of 15 generalist and 390 specialist SVMs. SVMs with linear kernel configuration with z = 5h and z = 5v zoning achieved better performance with 94.4% and 94.7% hit averages respectively. The results were compared with the Neural Networks proposed by Aires in 2005, where all SMV's results were superior to those of the NNs. The biggest difference was in the? zoning z = 5h, where, the Neural Networks had an average of 82.4% accuracy and the SVM of 94.4%, while the smallest difference was in the? zoning z = 7 with an average of accuracy? of 88.9% and 94,1% for NNs and SVMs respectively.porUniversidade Tecnológica Federal do ParanáPonta GrossaTecnologia em Análise e Desenvolvimento de SistemasUTFPRBrasilDepartamento Acadêmico de InformáticaCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOManuscritosConjunto de caracteres (Processamento de dados)Sistemas de reconhecimento de padrõesManuscriptsCharacter sets (Data processing)Pattern recognition systemsReconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)Offline handwriting character recognition using Support Vector Machine (SVM)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisPonta GrossaAires, Simone Bello KaminskiAires, Simone Bello KaminskiMorais, Erikson Freitas deBorges, Helyane BronoskiCardoso, Samarone JonathanSantana, Sergio da Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRLICENSElicense.txtlicense.txttext/plain; charset=utf-81290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/4/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD54ORIGINALPG_COADS_2019_2_06.pdfPG_COADS_2019_2_06.pdfapplication/pdf3232748http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/3/PG_COADS_2019_2_06.pdfe7dd2e7eb39b27782b8139ec23a88ba9MD53TEXTPG_COADS_2019_2_06.pdf.txtPG_COADS_2019_2_06.pdf.txtExtracted texttext/plain98298http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/5/PG_COADS_2019_2_06.pdf.txte9ad567ea3ebd229511be54f683bda29MD55THUMBNAILPG_COADS_2019_2_06.pdf.jpgPG_COADS_2019_2_06.pdf.jpgGenerated Thumbnailimage/jpeg1472http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/6/PG_COADS_2019_2_06.pdf.jpg0a1ef25f46a8f7c7551a3c6248f649e8MD561/239532021-12-10 19:07:50.496oai:repositorio.utfpr.edu.br:1/23953TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2021-12-10T21:07:50Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
dc.title.alternative.pt_BR.fl_str_mv Offline handwriting character recognition using Support Vector Machine (SVM)
title Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
spellingShingle Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
Cardoso, Samarone Jonathan
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Manuscritos
Conjunto de caracteres (Processamento de dados)
Sistemas de reconhecimento de padrões
Manuscripts
Character sets (Data processing)
Pattern recognition systems
title_short Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_full Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_fullStr Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_full_unstemmed Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
title_sort Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM)
author Cardoso, Samarone Jonathan
author_facet Cardoso, Samarone Jonathan
Santana, Sergio da Silva
author_role author
author2 Santana, Sergio da Silva
author2_role author
dc.contributor.advisor1.fl_str_mv Aires, Simone Bello Kaminski
dc.contributor.referee1.fl_str_mv Aires, Simone Bello Kaminski
dc.contributor.referee2.fl_str_mv Morais, Erikson Freitas de
dc.contributor.referee3.fl_str_mv Borges, Helyane Bronoski
dc.contributor.author.fl_str_mv Cardoso, Samarone Jonathan
Santana, Sergio da Silva
contributor_str_mv Aires, Simone Bello Kaminski
Aires, Simone Bello Kaminski
Morais, Erikson Freitas de
Borges, Helyane Bronoski
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Manuscritos
Conjunto de caracteres (Processamento de dados)
Sistemas de reconhecimento de padrões
Manuscripts
Character sets (Data processing)
Pattern recognition systems
dc.subject.por.fl_str_mv Manuscritos
Conjunto de caracteres (Processamento de dados)
Sistemas de reconhecimento de padrões
Manuscripts
Character sets (Data processing)
Pattern recognition systems
description Este trabalho investiga o uso de SVM’s (Support Vector Machine) para reconhecimento de caracteres manuscritos maiúsculos do alfabeto latino. Utilizou-se para os experimentos dados off-line da base IRONOFF. Os dados foram tratados previamente pelas técnicas de pré-processamento por limiarização e bounding box. Para extração de características utilizou-se a concavidade e convexidade efetuando-se rotulação do pixel de fundo. Posteriormente foi aplicado o mecanismo de zoneamento perceptivo dividindo os caracteres em Z partes (z = 0, z = 4, z = 5 horizontal, z = 5 vertical e z = 7). Os dados foram divididos em conjuntos de treinamento e teste para a criação de SVM’s generalistas e especialistas. Para os experimentos foi utilizada a ferramenta WEKA. Foram aplicadas as configurações de kernel (linear, radial e sigmoid) nas SVM’s criando assim um total de 15 SVM’s generalistas e 390 especialistas. As SVM’s com configuração de kernel linear com os zoneamentos z = 5h e z = 5v obtiveram um melhor desempenho com médias de acerto de 94,4% e 94,7% respectivamente. Os resultados encontrados foram comparados com as Redes Neurais propostas por Aires em 2005, onde todos os resultados das SMV’s foram superiores as das RN’s. A maior diferença foi no zoneamento z = 5h onde as RN’s tiveram média de acerto de 82,4% e a SVM de 94,4% e a menor diferença foi no zoneamento z = 7 com médias de acertos de 88,9% e 94,1%, RN’s e SVM’s respectivamente.
publishDate 2019
dc.date.issued.fl_str_mv 2019-11-07
dc.date.accessioned.fl_str_mv 2021-01-22T20:14:48Z
dc.date.available.fl_str_mv 2021-01-22T20:14:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARDOSO, Samarone; SANTANA, Sergio. Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM). 2019. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/23953
identifier_str_mv CARDOSO, Samarone; SANTANA, Sergio. Reconhecimento de caracteres manuscritos off-line utilizando Support Vector Machine (SVM). 2019. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2019.
url http://repositorio.utfpr.edu.br/jspui/handle/1/23953
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
dc.publisher.program.fl_str_mv Tecnologia em Análise e Desenvolvimento de Sistemas
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento Acadêmico de Informática
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Ponta Grossa
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/4/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/3/PG_COADS_2019_2_06.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/5/PG_COADS_2019_2_06.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23953/6/PG_COADS_2019_2_06.pdf.jpg
bitstream.checksum.fl_str_mv b9d82215ab23456fa2d8b49c5df1b95b
e7dd2e7eb39b27782b8139ec23a88ba9
e9ad567ea3ebd229511be54f683bda29
0a1ef25f46a8f7c7551a3c6248f649e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923211302404096