Respiratory pattern prediction for synchronized functional electrical stimulation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
Texto Completo: | http://repositorio.utfpr.edu.br/jspui/handle/1/23601 |
Resumo: | Além dos problemas físicos, psíquicos e sociais, a paralisia nos músculos ventilatórios pode ser um dos efeitos colaterais causados pela lesão medular. Devido ao impedimento total ou parcial da condução dos potenciais de ação que realizam a ativação muscular, pode haver alteração na mecânica ventilatória, afetando a capacidade do organismo em manter a oxigenação por causa da paralisia diafragmática. Além disso, eventos de tosse, que são importantes para retirada de secreção podem ser dificultados por causa da paralisia dos músculos abdominais. Este problema é considerado uma das maiores causas de morte em pessoas com lesão medular. A estimulação elétrica funcional transcutânea automaticamente sincronizada com a respiração espontânea é considerada uma técnica alternativa para reabilitação respiratória em pessoas com lesão medular. Porém, durante a estimulação podem ocorrer eventos como tosse, movimentação corporal, fala, entre outros, que necessitam ser tratados individualmente pelo sistema de estimulação elétrica. O objetivo principal desta pesquisa é desenvolver um modelo de aprendizagem de máquina para predição automática de padrões respiratórios visando o gatilhamento de sistemas sincronizados de estimulação elétrica funcional. Diferentes tipos de sensores foram avaliados para aquisição do sinal respiratório: sensor de pressão diferencial conectado a um pneumotacógrafo; strain gauges em estrutura de célula de carga acoplados a uma cinta elástica, para medir a expansão torácica durante a respiração; e eletrodos de EMG posicionados nas regiões dos músculos esternocleidomastoideo, oblíquo externo e Omo-Hióideo, para detecção de tosse. Dados de 20 voluntários hígidos foram adquiridos durante movimentos voluntários de tosse, respiração normal, fala e movimentação corporal, e um banco de sinais catalogados foi criado. Um algoritmo de aprendizagem de máquina baseado em Long Short-Term Memory Networks foi desenvolvido para classificar os dados deste banco de sinais entre as classes “pré-tosse”, “respiração normal” e “eventos interferentes” (fala e movimentação corporal). A melhor taxa de acerto da classificação automática foi de 80,24%, utilizando a combinação dos sinais provenientes dos sensores de pressão e do eletrodo posicionado no Omo-Hióideo. O algoritmo desenvolvido é generalizável, permitindo utilização em pessoas que não participaram da etapa de treinamento da rede. Desta forma, torna-se um forte candidato para ser utilizado em sistemas de estimulação elétrica sincronizada. Porém, o sensor de pressão acoplado ao pneumotacógrafo é considerado ainda um sensor intrusivo, e não confortável para uso prolongado. |
id |
UTFPR-12_9ad00186bf689f97f51b5fdf8bf9024b |
---|---|
oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/23601 |
network_acronym_str |
UTFPR-12 |
network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
repository_id_str |
|
spelling |
2020-12-23T18:09:58Z2020-12-23T18:09:58Z2020-06-30COSTA, Taisa Daiana da. Respiratory pattern prediction for synchronized functional electrical stimulation. 2020. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2020.http://repositorio.utfpr.edu.br/jspui/handle/1/23601Além dos problemas físicos, psíquicos e sociais, a paralisia nos músculos ventilatórios pode ser um dos efeitos colaterais causados pela lesão medular. Devido ao impedimento total ou parcial da condução dos potenciais de ação que realizam a ativação muscular, pode haver alteração na mecânica ventilatória, afetando a capacidade do organismo em manter a oxigenação por causa da paralisia diafragmática. Além disso, eventos de tosse, que são importantes para retirada de secreção podem ser dificultados por causa da paralisia dos músculos abdominais. Este problema é considerado uma das maiores causas de morte em pessoas com lesão medular. A estimulação elétrica funcional transcutânea automaticamente sincronizada com a respiração espontânea é considerada uma técnica alternativa para reabilitação respiratória em pessoas com lesão medular. Porém, durante a estimulação podem ocorrer eventos como tosse, movimentação corporal, fala, entre outros, que necessitam ser tratados individualmente pelo sistema de estimulação elétrica. O objetivo principal desta pesquisa é desenvolver um modelo de aprendizagem de máquina para predição automática de padrões respiratórios visando o gatilhamento de sistemas sincronizados de estimulação elétrica funcional. Diferentes tipos de sensores foram avaliados para aquisição do sinal respiratório: sensor de pressão diferencial conectado a um pneumotacógrafo; strain gauges em estrutura de célula de carga acoplados a uma cinta elástica, para medir a expansão torácica durante a respiração; e eletrodos de EMG posicionados nas regiões dos músculos esternocleidomastoideo, oblíquo externo e Omo-Hióideo, para detecção de tosse. Dados de 20 voluntários hígidos foram adquiridos durante movimentos voluntários de tosse, respiração normal, fala e movimentação corporal, e um banco de sinais catalogados foi criado. Um algoritmo de aprendizagem de máquina baseado em Long Short-Term Memory Networks foi desenvolvido para classificar os dados deste banco de sinais entre as classes “pré-tosse”, “respiração normal” e “eventos interferentes” (fala e movimentação corporal). A melhor taxa de acerto da classificação automática foi de 80,24%, utilizando a combinação dos sinais provenientes dos sensores de pressão e do eletrodo posicionado no Omo-Hióideo. O algoritmo desenvolvido é generalizável, permitindo utilização em pessoas que não participaram da etapa de treinamento da rede. Desta forma, torna-se um forte candidato para ser utilizado em sistemas de estimulação elétrica sincronizada. Porém, o sensor de pressão acoplado ao pneumotacógrafo é considerado ainda um sensor intrusivo, e não confortável para uso prolongado.In addition to physical, psychological and social problems, paralysis in the ventilatory muscles can be one of the side effects caused by spinal cord injury. Due to the total or partial impediment of the conduction of the action potentials that perform the muscle activation, there may be changes in the ventilatory mechanics, affecting the body’s ability to maintain oxygenation due to diaphragmatic paralysis. In addition, coughing events, which are important for secretion removal, may be hampered by paralysis of the abdominal muscles. This problem is the main cause of death in people with spinal cord injury. Transcutaneous functional electrical stimulation, automatically synchronized with spontaneous breathing is considered an alternative technique for respiratory rehabilitation in people with spinal cord injury. However, during stimulation, other events may occur, such as coughing, body movement, speech, among others, which need to be treated individually by the stimulation system. The main goal of this research is to develop a machine learning model for automatic prediction of respiratory patterns for synchronized electrical stimulation systems. Different types of sensors were evaluated to acquire the respiratory signal: differential pressure sensor connected to a pneumotachometer; strain gauges in a load cell structure coupled to an elastic band, to measure chest expansion during breathing; and EMG electrodes positioned in the regions of the sternocleidomastoid, external oblique and omohyoid muscles, to detect cough. Data from 20 healthy volunteers were acquired during voluntary events of coughing, normal breathing, speech and body movement, and a tagged dataset was created. A machine learning algorithm based on Long Short-Term Memory Networks was developed to classify the data between the classes “precough”, “normal breathing” and “interfering events (speech and body movement)”. The accuracy was 80.24%, using the combination of data from the pressure sensor and the electrodes positioned on the omohyoid muscle. The developed algorithm is generalizable, allowing use in people who did not participate in the training phase of the network. In this way, it becomes a strong candidate to be used in synchronized electrical stimulation systems. However, the pressure sensor connected to the pneumotachometer is considered an intrusive sensor, and not comfortable for prolonged use.engUniversidade Tecnológica Federal do ParanáCuritibaPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRBrasilhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICAEngenharia ElétricaMedula espinhal - Ferimentos e lesõesMúsculos respiratóriosAbdome - MúsculosEstimulação elétricaSincronizaçãoDetectores - DesenvolvimentoPressão - MediçãoAprendizado do computadorProcessamento de sinais - Técnicas digitaisPercepção de padrõesSpinal cord - Wounds and injuriesRespiratory musclesAbdomen - MusclesElectric stimulationSynchronizationDetectors - DevelopmentPressure - MeasurementMachine learningSignal processing - Digital techniquePattern perceptionRespiratory pattern prediction for synchronized functional electrical stimulationPrevisão automática de padrões respiratórios para estimulação elétrica funcional sincronizadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCuritibaNohama, Percyhttps://orcid.org/0000-0002-8051-8453http://lattes.cnpq.br/5055126579468463Nogueira Neto, Guilherme Nuneshttps://orcid.org/0000-0002-7040-6255http://lattes.cnpq.br/9185638358501479Nakato, Adriane Mullerhttps://orcid.org/0000-0003-0781-988Xhttp://lattes.cnpq.br/9346025971525583Meza, Gilberto Reynosohttps://orcid.org/0000-0002-8392-6225http://lattes.cnpq.br/1888359548640986Cunha, Jose Carlos dahttp://lattes.cnpq.br/7523890967788173Sanches, Paulo Roberto Stefanihttps://orcid.org/0000-0002-0345-7845http://lattes.cnpq.br/9763437636509266Nohama, Percyhttps://orcid.org/0000-0002-8051-8453http://lattes.cnpq.br/5055126579468463https://orcid.org/0000-0001-8605-4584http://lattes.cnpq.br/8568094359554371Costa, Taisa Daiana dareponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRLICENSElicense.txtlicense.txttext/plain; charset=utf-81290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/3/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD53ORIGINALsynchronizedfunctionalelectricalstimulation.pdfapplication/pdf11304564http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/1/synchronizedfunctionalelectricalstimulation.pdff73f07d49c5eb667d5f7ce4da7914d2dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52TEXTsynchronizedfunctionalelectricalstimulation.pdf.txtsynchronizedfunctionalelectricalstimulation.pdf.txtExtracted texttext/plain158210http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/4/synchronizedfunctionalelectricalstimulation.pdf.txt106cfd2d8de425d670d61407ddae4012MD54THUMBNAILsynchronizedfunctionalelectricalstimulation.pdf.jpgsynchronizedfunctionalelectricalstimulation.pdf.jpgGenerated Thumbnailimage/jpeg1216http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/5/synchronizedfunctionalelectricalstimulation.pdf.jpgfc4c78e8fc059d13716ac2e46a5bcb97MD551/236012020-12-24 04:10:55.675oai:repositorio.utfpr.edu.br:1/23601TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2020-12-24T06:10:55Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
dc.title.pt_BR.fl_str_mv |
Respiratory pattern prediction for synchronized functional electrical stimulation |
dc.title.alternative.pt_BR.fl_str_mv |
Previsão automática de padrões respiratórios para estimulação elétrica funcional sincronizada |
title |
Respiratory pattern prediction for synchronized functional electrical stimulation |
spellingShingle |
Respiratory pattern prediction for synchronized functional electrical stimulation Costa, Taisa Daiana da CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA Medula espinhal - Ferimentos e lesões Músculos respiratórios Abdome - Músculos Estimulação elétrica Sincronização Detectores - Desenvolvimento Pressão - Medição Aprendizado do computador Processamento de sinais - Técnicas digitais Percepção de padrões Spinal cord - Wounds and injuries Respiratory muscles Abdomen - Muscles Electric stimulation Synchronization Detectors - Development Pressure - Measurement Machine learning Signal processing - Digital technique Pattern perception Engenharia Elétrica |
title_short |
Respiratory pattern prediction for synchronized functional electrical stimulation |
title_full |
Respiratory pattern prediction for synchronized functional electrical stimulation |
title_fullStr |
Respiratory pattern prediction for synchronized functional electrical stimulation |
title_full_unstemmed |
Respiratory pattern prediction for synchronized functional electrical stimulation |
title_sort |
Respiratory pattern prediction for synchronized functional electrical stimulation |
author |
Costa, Taisa Daiana da |
author_facet |
Costa, Taisa Daiana da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Nohama, Percy |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0002-8051-8453 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5055126579468463 |
dc.contributor.advisor-co1.fl_str_mv |
Nogueira Neto, Guilherme Nunes |
dc.contributor.advisor-co1ID.fl_str_mv |
https://orcid.org/0000-0002-7040-6255 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9185638358501479 |
dc.contributor.referee1.fl_str_mv |
Nakato, Adriane Muller |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0003-0781-988X |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9346025971525583 |
dc.contributor.referee2.fl_str_mv |
Meza, Gilberto Reynoso |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0002-8392-6225 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1888359548640986 |
dc.contributor.referee3.fl_str_mv |
Cunha, Jose Carlos da |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7523890967788173 |
dc.contributor.referee4.fl_str_mv |
Sanches, Paulo Roberto Stefani |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0002-0345-7845 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/9763437636509266 |
dc.contributor.referee5.fl_str_mv |
Nohama, Percy |
dc.contributor.referee5ID.fl_str_mv |
https://orcid.org/0000-0002-8051-8453 |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/5055126579468463 |
dc.contributor.authorID.fl_str_mv |
https://orcid.org/0000-0001-8605-4584 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8568094359554371 |
dc.contributor.author.fl_str_mv |
Costa, Taisa Daiana da |
contributor_str_mv |
Nohama, Percy Nogueira Neto, Guilherme Nunes Nakato, Adriane Muller Meza, Gilberto Reynoso Cunha, Jose Carlos da Sanches, Paulo Roberto Stefani Nohama, Percy |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA |
topic |
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA Medula espinhal - Ferimentos e lesões Músculos respiratórios Abdome - Músculos Estimulação elétrica Sincronização Detectores - Desenvolvimento Pressão - Medição Aprendizado do computador Processamento de sinais - Técnicas digitais Percepção de padrões Spinal cord - Wounds and injuries Respiratory muscles Abdomen - Muscles Electric stimulation Synchronization Detectors - Development Pressure - Measurement Machine learning Signal processing - Digital technique Pattern perception Engenharia Elétrica |
dc.subject.por.fl_str_mv |
Medula espinhal - Ferimentos e lesões Músculos respiratórios Abdome - Músculos Estimulação elétrica Sincronização Detectores - Desenvolvimento Pressão - Medição Aprendizado do computador Processamento de sinais - Técnicas digitais Percepção de padrões Spinal cord - Wounds and injuries Respiratory muscles Abdomen - Muscles Electric stimulation Synchronization Detectors - Development Pressure - Measurement Machine learning Signal processing - Digital technique Pattern perception |
dc.subject.capes.pt_BR.fl_str_mv |
Engenharia Elétrica |
description |
Além dos problemas físicos, psíquicos e sociais, a paralisia nos músculos ventilatórios pode ser um dos efeitos colaterais causados pela lesão medular. Devido ao impedimento total ou parcial da condução dos potenciais de ação que realizam a ativação muscular, pode haver alteração na mecânica ventilatória, afetando a capacidade do organismo em manter a oxigenação por causa da paralisia diafragmática. Além disso, eventos de tosse, que são importantes para retirada de secreção podem ser dificultados por causa da paralisia dos músculos abdominais. Este problema é considerado uma das maiores causas de morte em pessoas com lesão medular. A estimulação elétrica funcional transcutânea automaticamente sincronizada com a respiração espontânea é considerada uma técnica alternativa para reabilitação respiratória em pessoas com lesão medular. Porém, durante a estimulação podem ocorrer eventos como tosse, movimentação corporal, fala, entre outros, que necessitam ser tratados individualmente pelo sistema de estimulação elétrica. O objetivo principal desta pesquisa é desenvolver um modelo de aprendizagem de máquina para predição automática de padrões respiratórios visando o gatilhamento de sistemas sincronizados de estimulação elétrica funcional. Diferentes tipos de sensores foram avaliados para aquisição do sinal respiratório: sensor de pressão diferencial conectado a um pneumotacógrafo; strain gauges em estrutura de célula de carga acoplados a uma cinta elástica, para medir a expansão torácica durante a respiração; e eletrodos de EMG posicionados nas regiões dos músculos esternocleidomastoideo, oblíquo externo e Omo-Hióideo, para detecção de tosse. Dados de 20 voluntários hígidos foram adquiridos durante movimentos voluntários de tosse, respiração normal, fala e movimentação corporal, e um banco de sinais catalogados foi criado. Um algoritmo de aprendizagem de máquina baseado em Long Short-Term Memory Networks foi desenvolvido para classificar os dados deste banco de sinais entre as classes “pré-tosse”, “respiração normal” e “eventos interferentes” (fala e movimentação corporal). A melhor taxa de acerto da classificação automática foi de 80,24%, utilizando a combinação dos sinais provenientes dos sensores de pressão e do eletrodo posicionado no Omo-Hióideo. O algoritmo desenvolvido é generalizável, permitindo utilização em pessoas que não participaram da etapa de treinamento da rede. Desta forma, torna-se um forte candidato para ser utilizado em sistemas de estimulação elétrica sincronizada. Porém, o sensor de pressão acoplado ao pneumotacógrafo é considerado ainda um sensor intrusivo, e não confortável para uso prolongado. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-12-23T18:09:58Z |
dc.date.available.fl_str_mv |
2020-12-23T18:09:58Z |
dc.date.issued.fl_str_mv |
2020-06-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
COSTA, Taisa Daiana da. Respiratory pattern prediction for synchronized functional electrical stimulation. 2020. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2020. |
dc.identifier.uri.fl_str_mv |
http://repositorio.utfpr.edu.br/jspui/handle/1/23601 |
identifier_str_mv |
COSTA, Taisa Daiana da. Respiratory pattern prediction for synchronized functional electrical stimulation. 2020. Tese (Doutorado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2020. |
url |
http://repositorio.utfpr.edu.br/jspui/handle/1/23601 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Curitiba |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial |
dc.publisher.initials.fl_str_mv |
UTFPR |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Curitiba |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
instacron_str |
UTFPR |
institution |
UTFPR |
reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
bitstream.url.fl_str_mv |
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/3/license.txt http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/1/synchronizedfunctionalelectricalstimulation.pdf http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/2/license_rdf http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/4/synchronizedfunctionalelectricalstimulation.pdf.txt http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/23601/5/synchronizedfunctionalelectricalstimulation.pdf.jpg |
bitstream.checksum.fl_str_mv |
b9d82215ab23456fa2d8b49c5df1b95b f73f07d49c5eb667d5f7ce4da7914d2d 0175ea4a2d4caec4bbcc37e300941108 106cfd2d8de425d670d61407ddae4012 fc4c78e8fc059d13716ac2e46a5bcb97 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
repository.mail.fl_str_mv |
|
_version_ |
1805923097479479296 |