Inferência de redes gênicas com algoritmo genético e modelo de ilhas

Detalhes bibliográficos
Autor(a) principal: Hattori, Leandro Takeshi
Data de Publicação: 2013
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/28346
Resumo: Uma massiva quantidade de dados de expressões gênicas vem sendo produzidas devido ao desenvolvimento de técnicas de extração de informações moleculares como, por exemplo, a técnica de RNA-Seq. Este desenvolvimento tem como base o conceito do dogma central da biologia, em que o funcionamento de um organismo é baseado nas expressões de seus genes. Saber como é formado a estrutura de uma regulação gênica (GRN) pode contribuir para diversas aplicações como entender o funcionamento de determinadas doenças, análise de doenças genéticas e desenvolvimento de terapias e drogas mais eficientes. Então, técnicas computacionais estão sendo desenvolvidas para realizar a inferência destas redes de GRNs, buscando recuperar redes com alta precisão. A inferência de GRNs é um problema desafiador dado a grande quantidade de característica (milhares de genes) e poucas amostras (dados biológicos). Existem diversos métodos propostos na literatura para tal inferência, este trabalho aborda um método de seleção de características. A seleção de características é composta basicamente por uma função critério e algoritmo de busca. A função critério abordada neste trabalho é baseada na entropia, a qual tem o objetivo de avaliar os possíveis resultados de um determinado problema. O algoritmo genético e o modelo de ilhas foram as estratégias utilizadas para realizar as buscas dos possíveis candidatos para todos os gene da rede, sendo estes componentes o alvo de avaliação deste trabalho. Para inferir e validar as redes foram utilizadas Redes Gênicas Artificiais (AGNs), pois redes são passíveis de avaliação dado o conhecimento da estrutura, que permitem medir a eficiência dos métodos abordados. Os resultados experimentais baseados no desempenho dos algoritmos de buscas utilizando o modelo de ilhas obtiveram melhores resultados quando comparados ao algoritmo genético, entretanto o tempo computacional gerado pelo modelo de ilhas é superior ao tempo de execução do algoritmo genético.
id UTFPR-12_a8501807d7925507624ffed2b3116de8
oai_identifier_str oai:repositorio.utfpr.edu.br:1/28346
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2022-05-09T23:28:56Z2022-05-09T23:28:56Z2013HATTORI, Leandro Takeshi. Inferência de redes gênicas com algoritmo genético e modelo de ilhas. 2013. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2013.http://repositorio.utfpr.edu.br/jspui/handle/1/28346Uma massiva quantidade de dados de expressões gênicas vem sendo produzidas devido ao desenvolvimento de técnicas de extração de informações moleculares como, por exemplo, a técnica de RNA-Seq. Este desenvolvimento tem como base o conceito do dogma central da biologia, em que o funcionamento de um organismo é baseado nas expressões de seus genes. Saber como é formado a estrutura de uma regulação gênica (GRN) pode contribuir para diversas aplicações como entender o funcionamento de determinadas doenças, análise de doenças genéticas e desenvolvimento de terapias e drogas mais eficientes. Então, técnicas computacionais estão sendo desenvolvidas para realizar a inferência destas redes de GRNs, buscando recuperar redes com alta precisão. A inferência de GRNs é um problema desafiador dado a grande quantidade de característica (milhares de genes) e poucas amostras (dados biológicos). Existem diversos métodos propostos na literatura para tal inferência, este trabalho aborda um método de seleção de características. A seleção de características é composta basicamente por uma função critério e algoritmo de busca. A função critério abordada neste trabalho é baseada na entropia, a qual tem o objetivo de avaliar os possíveis resultados de um determinado problema. O algoritmo genético e o modelo de ilhas foram as estratégias utilizadas para realizar as buscas dos possíveis candidatos para todos os gene da rede, sendo estes componentes o alvo de avaliação deste trabalho. Para inferir e validar as redes foram utilizadas Redes Gênicas Artificiais (AGNs), pois redes são passíveis de avaliação dado o conhecimento da estrutura, que permitem medir a eficiência dos métodos abordados. Os resultados experimentais baseados no desempenho dos algoritmos de buscas utilizando o modelo de ilhas obtiveram melhores resultados quando comparados ao algoritmo genético, entretanto o tempo computacional gerado pelo modelo de ilhas é superior ao tempo de execução do algoritmo genético.A massive amount of data gene expression has been produced due to the development of techniques for the extraction of molecular information, for example, the technique of RNA Seq. This development is based on the concept as the concept of central dogma of biology, in which the operation of a body is based on the expression of their genes. Knowing how is formed the structure of a regulatory gene (GRN) may contribute to a variety of applications such as understanding the operation of certain diseases, analysis of genetic diseases and to develop therapies and more effective drugs. So, computational techniques are being developed to make the inference of these networks GRNs, seeking to recover networks with high accuracy. The inference of GRNs is a challenging problem given the large amount of features (thousands of genes) and few samples (biological data). There are several methods proposed in the literature for such an inference, this paper discusses a method of feature selection. Feature selection is basically composed by a criterion function and search algorithm. The criterion function addressed in this work is based on the entropy, which aims to evaluate the possible outcomes of a given problem. And the genetic algorithm and genetic algorithm with model islands were the strategies used to perform the search of possible candidates for all gene network, and these components the target evaluation of this work. To infer and validate networks were used genetic networks Artificial (AGNs), such networks are assessable given the knowledge of the structure, and measure the effectiveness of the methods discussed. Experimental results based on the performance of the algorithms search using the model of islands obtained better results when compared to the genetic algorithm, but the computational time generated by the model of islands is higher than the runtime of the genetic algorithm.porUniversidade Tecnológica Federal do ParanáCornelio ProcopioTecnologia em Análise e Desenvolvimento de SistemasUTFPRBrasilCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOAlgoritmos genéticosEntropiaSistemas de reconhecimento de padrõesGenetic algorithmsEntropyPattern recognition systemsInferência de redes gênicas com algoritmo genético e modelo de ilhasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisCornélio ProcópioLopes, Fabrício MartinsShishido, Henrique YoshikazuLopes, Fabrício MartinsShishido, Henrique YoshikazuSanches, Danilo SipoliHattori, Leandro Takeshiinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRORIGINALCP_COADS_2013_1_08.pdfCP_COADS_2013_1_08.pdfapplication/pdf1079435http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/1/CP_COADS_2013_1_08.pdf7f12f3776d098b4c11d2c62b69a06544MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/2/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD52TEXTCP_COADS_2013_1_08.pdf.txtCP_COADS_2013_1_08.pdf.txtExtracted texttext/plain82741http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/3/CP_COADS_2013_1_08.pdf.txt730e399e522cab7bff9c3a646dfccb3dMD53THUMBNAILCP_COADS_2013_1_08.pdf.jpgCP_COADS_2013_1_08.pdf.jpgGenerated Thumbnailimage/jpeg1259http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/4/CP_COADS_2013_1_08.pdf.jpg45c4e9ecdfa932c8d6d85e71766e0487MD541/283462022-05-10 03:07:52.451oai:repositorio.utfpr.edu.br:1/28346TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2022-05-10T06:07:52Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Inferência de redes gênicas com algoritmo genético e modelo de ilhas
title Inferência de redes gênicas com algoritmo genético e modelo de ilhas
spellingShingle Inferência de redes gênicas com algoritmo genético e modelo de ilhas
Hattori, Leandro Takeshi
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Algoritmos genéticos
Entropia
Sistemas de reconhecimento de padrões
Genetic algorithms
Entropy
Pattern recognition systems
title_short Inferência de redes gênicas com algoritmo genético e modelo de ilhas
title_full Inferência de redes gênicas com algoritmo genético e modelo de ilhas
title_fullStr Inferência de redes gênicas com algoritmo genético e modelo de ilhas
title_full_unstemmed Inferência de redes gênicas com algoritmo genético e modelo de ilhas
title_sort Inferência de redes gênicas com algoritmo genético e modelo de ilhas
author Hattori, Leandro Takeshi
author_facet Hattori, Leandro Takeshi
author_role author
dc.contributor.advisor1.fl_str_mv Lopes, Fabrício Martins
dc.contributor.advisor-co1.fl_str_mv Shishido, Henrique Yoshikazu
dc.contributor.referee1.fl_str_mv Lopes, Fabrício Martins
dc.contributor.referee2.fl_str_mv Shishido, Henrique Yoshikazu
dc.contributor.referee3.fl_str_mv Sanches, Danilo Sipoli
dc.contributor.author.fl_str_mv Hattori, Leandro Takeshi
contributor_str_mv Lopes, Fabrício Martins
Shishido, Henrique Yoshikazu
Lopes, Fabrício Martins
Shishido, Henrique Yoshikazu
Sanches, Danilo Sipoli
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Algoritmos genéticos
Entropia
Sistemas de reconhecimento de padrões
Genetic algorithms
Entropy
Pattern recognition systems
dc.subject.por.fl_str_mv Algoritmos genéticos
Entropia
Sistemas de reconhecimento de padrões
Genetic algorithms
Entropy
Pattern recognition systems
description Uma massiva quantidade de dados de expressões gênicas vem sendo produzidas devido ao desenvolvimento de técnicas de extração de informações moleculares como, por exemplo, a técnica de RNA-Seq. Este desenvolvimento tem como base o conceito do dogma central da biologia, em que o funcionamento de um organismo é baseado nas expressões de seus genes. Saber como é formado a estrutura de uma regulação gênica (GRN) pode contribuir para diversas aplicações como entender o funcionamento de determinadas doenças, análise de doenças genéticas e desenvolvimento de terapias e drogas mais eficientes. Então, técnicas computacionais estão sendo desenvolvidas para realizar a inferência destas redes de GRNs, buscando recuperar redes com alta precisão. A inferência de GRNs é um problema desafiador dado a grande quantidade de característica (milhares de genes) e poucas amostras (dados biológicos). Existem diversos métodos propostos na literatura para tal inferência, este trabalho aborda um método de seleção de características. A seleção de características é composta basicamente por uma função critério e algoritmo de busca. A função critério abordada neste trabalho é baseada na entropia, a qual tem o objetivo de avaliar os possíveis resultados de um determinado problema. O algoritmo genético e o modelo de ilhas foram as estratégias utilizadas para realizar as buscas dos possíveis candidatos para todos os gene da rede, sendo estes componentes o alvo de avaliação deste trabalho. Para inferir e validar as redes foram utilizadas Redes Gênicas Artificiais (AGNs), pois redes são passíveis de avaliação dado o conhecimento da estrutura, que permitem medir a eficiência dos métodos abordados. Os resultados experimentais baseados no desempenho dos algoritmos de buscas utilizando o modelo de ilhas obtiveram melhores resultados quando comparados ao algoritmo genético, entretanto o tempo computacional gerado pelo modelo de ilhas é superior ao tempo de execução do algoritmo genético.
publishDate 2013
dc.date.issued.fl_str_mv 2013
dc.date.accessioned.fl_str_mv 2022-05-09T23:28:56Z
dc.date.available.fl_str_mv 2022-05-09T23:28:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv HATTORI, Leandro Takeshi. Inferência de redes gênicas com algoritmo genético e modelo de ilhas. 2013. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2013.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/28346
identifier_str_mv HATTORI, Leandro Takeshi. Inferência de redes gênicas com algoritmo genético e modelo de ilhas. 2013. Trabalho de Conclusão de Curso (Tecnologia em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2013.
url http://repositorio.utfpr.edu.br/jspui/handle/1/28346
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Cornelio Procopio
dc.publisher.program.fl_str_mv Tecnologia em Análise e Desenvolvimento de Sistemas
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Cornelio Procopio
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/1/CP_COADS_2013_1_08.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/2/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/3/CP_COADS_2013_1_08.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/28346/4/CP_COADS_2013_1_08.pdf.jpg
bitstream.checksum.fl_str_mv 7f12f3776d098b4c11d2c62b69a06544
b9d82215ab23456fa2d8b49c5df1b95b
730e399e522cab7bff9c3a646dfccb3d
45c4e9ecdfa932c8d6d85e71766e0487
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805922987195498496