Reconhecimento de padrões por meio de floresta de caminhos ótimos

Detalhes bibliográficos
Autor(a) principal: Toracio, Thiago Ribeiro
Data de Publicação: 2016
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Texto Completo: http://repositorio.utfpr.edu.br/jspui/handle/1/7449
Resumo: Atualmente existem grandes bases de dados disponíveis, devido aos avanços das tecnologias de aquisição e armazenamento dessas informações. No entanto, há uma grande quantidade de dados não rotulados em relação a uma pequena parte rotulada, tornando-se necessárias técnicas de aprendizado eficazes e eficientes para manipulação e análise dessas informações. Para o aprendizado, é necessário o reconhecimento de determinados padrões, os quais podem ser obtidos por descritores de imagens, que extraem propriedades visuais relacionadas à cor, forma e textura. Algumas características extraídas das imagens podem ser redundantes, outras são mais relevantes na discriminação das imagens. Por isto, após a extração das características das imagens, é importante a análise e a obtenção do vetor de características que melhor descreve o conjunto de dados, aplicando técnicas de redução de dimensionalidade, otimização ou normalizações. Em seguida, podem ser utilizados diferentes procedimentos (supervisionados, não supervisionados e semi-supervisionados) de aprendizado. Este trabalho tem como objetivo o estudo e a análise de técnicas mais efetivas e eficientes para descrição e classificação de bioimagens.
id UTFPR-12_eae95e4eb3d36470495c8b0e8538eee1
oai_identifier_str oai:repositorio.utfpr.edu.br:1/7449
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling 2020-11-10T19:50:53Z2020-11-10T19:50:53Z2016-06-20TORACIO, Thiago Ribeiro. Reconhecimento de padrões por meio de floresta de caminhos ótimos. 2016. Trabalho de Conclusão de Curso (Graduação em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2016.http://repositorio.utfpr.edu.br/jspui/handle/1/7449Atualmente existem grandes bases de dados disponíveis, devido aos avanços das tecnologias de aquisição e armazenamento dessas informações. No entanto, há uma grande quantidade de dados não rotulados em relação a uma pequena parte rotulada, tornando-se necessárias técnicas de aprendizado eficazes e eficientes para manipulação e análise dessas informações. Para o aprendizado, é necessário o reconhecimento de determinados padrões, os quais podem ser obtidos por descritores de imagens, que extraem propriedades visuais relacionadas à cor, forma e textura. Algumas características extraídas das imagens podem ser redundantes, outras são mais relevantes na discriminação das imagens. Por isto, após a extração das características das imagens, é importante a análise e a obtenção do vetor de características que melhor descreve o conjunto de dados, aplicando técnicas de redução de dimensionalidade, otimização ou normalizações. Em seguida, podem ser utilizados diferentes procedimentos (supervisionados, não supervisionados e semi-supervisionados) de aprendizado. Este trabalho tem como objetivo o estudo e a análise de técnicas mais efetivas e eficientes para descrição e classificação de bioimagens.Currently there are large databases available, due to the advances of the acquisition and storage of this information technologies. However, there is a large amount of unlabeled data in relation to a small section labeled. Becoming necessary effective and efficient learning techniques for manipulation and analysis of this information. For learning the recognition of certain patterns is needed, which can be obtained by imaging descriptors, extracting visual properties related to color, form and texture. Some of the images extracted features may be redundant, others are more relevant to the discrimination of the images. Therefore, after the extraction of the characteristics of images, it is important to analyze and obtain the feature vector that best describes the data set by applying dimensional reduction, optimization and normalization techniques. Then, different procedures may be used (supervised, semi-unsupervised and supervised) learning. This work aims to study and the analysis of more effective and efficient techniques for description and classification of bioimages.porUniversidade Tecnológica Federal do ParanáCornelio ProcopioTecnologia em Análise e Desenvolvimento de SistemasUTFPRBrasilCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOPercepção de padrõesClassificaçãoProcessamento de imagensPattern perceptionClassificationImage processingReconhecimento de padrões por meio de floresta de caminhos ótimosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisCornélio ProcópioSaito, Priscila Tiemi MaedaSaito, Priscila Tiemi MaedaBugatti, Pedro HenriqueSanches, Silvio Ricardo RodriguesToracio, Thiago Ribeiroinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRLICENSElicense.txttext/plain1290http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/1/license.txtb9d82215ab23456fa2d8b49c5df1b95bMD51ORIGINALCP_COADS_2016_1_07.pdfapplication/pdf491787http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/2/CP_COADS_2016_1_07.pdf80c70fc3f31fa322f4a5dc753a3f1fa8MD52TEXTCP_COADS_2016_1_07.pdf.txtExtracted texttext/plain41933http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/3/CP_COADS_2016_1_07.pdf.txt0f3433b47eecba6a9653ad45e230e504MD53THUMBNAILCP_COADS_2016_1_07.pdf.jpgGenerated Thumbnailimage/jpeg1397http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/4/CP_COADS_2016_1_07.pdf.jpg57c2d227ac73534811369daa7e883532MD541/74492020-11-10 17:50:53.899oai:repositorio.utfpr.edu.br:1/7449TmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGRhIHB1YmxpY2HDp8OjbywgYXV0b3Jpem8gYSBVVEZQUiBhIHZlaWN1bGFyLCAKYXRyYXbDqXMgZG8gUG9ydGFsIGRlIEluZm9ybWHDp8OjbyBlbSBBY2Vzc28gQWJlcnRvIChQSUFBKSBlIGRvcyBDYXTDoWxvZ29zIGRhcyBCaWJsaW90ZWNhcyAKZGVzdGEgSW5zdGl0dWnDp8Ojbywgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBkZSBhY29yZG8gY29tIGEgTGVpIG5vIDkuNjEwLzk4LCAKbyB0ZXh0byBkZXN0YSBvYnJhLCBvYnNlcnZhbmRvIGFzIGNvbmRpw6fDtWVzIGRlIGRpc3BvbmliaWxpemHDp8OjbyByZWdpc3RyYWRhcyBubyBpdGVtIDQgZG8gCuKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgVHJhYmFsaG9zIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28gZGUgR3JhZHVhw6fDo28gZSAKRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgZGUgSW5mb3JtYcOnw6NvIGUgbm9zIENhdMOhbG9nb3MgRWxldHLDtG5pY29zIGRvIApTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkLCB2aXNhbmRvIGEgCmRpdnVsZ2HDp8OjbyBkYSBwcm9kdcOnw6NvIGNpZW50w61maWNhIGJyYXNpbGVpcmEuCgogIEFzIHZpYXMgb3JpZ2luYWlzIGUgYXNzaW5hZGFzIHBlbG8ocykgYXV0b3IoZXMpIGRvIOKAnFRlcm1vIGRlIEF1dG9yaXphw6fDo28gcGFyYSBQdWJsaWNhw6fDo28gZGUgClRyYWJhbGhvcyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvIGRlIEdyYWR1YcOnw6NvIGUgRXNwZWNpYWxpemHDp8OjbywgRGlzc2VydGHDp8O1ZXMgZSBUZXNlcyBubyBQb3J0YWwgCmRlIEluZm9ybWHDp8OjbyBlIG5vcyBDYXTDoWxvZ29zIEVsZXRyw7RuaWNvcyBkbyBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIGRhIFVURlBS4oCdIGUgZGEg4oCcRGVjbGFyYcOnw6NvIApkZSBBdXRvcmlh4oCdIGVuY29udHJhbS1zZSBhcnF1aXZhZGFzIG5hIEJpYmxpb3RlY2EgZG8gQ8OibXB1cyBubyBxdWFsIG8gdHJhYmFsaG8gZm9pIGRlZmVuZGlkby4gCk5vIGNhc28gZGUgcHVibGljYcOnw7VlcyBkZSBhdXRvcmlhIGNvbGV0aXZhIGUgbXVsdGljw6JtcHVzLCBvcyBkb2N1bWVudG9zIGZpY2Fyw6NvIHNvYiBndWFyZGEgZGEgCkJpYmxpb3RlY2EgY29tIGEgcXVhbCBvIOKAnHByaW1laXJvIGF1dG9y4oCdIHBvc3N1YSB2w61uY3Vsby4KRepositório de PublicaçõesPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestopendoar:2020-11-10T19:50:53Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.pt_BR.fl_str_mv Reconhecimento de padrões por meio de floresta de caminhos ótimos
title Reconhecimento de padrões por meio de floresta de caminhos ótimos
spellingShingle Reconhecimento de padrões por meio de floresta de caminhos ótimos
Toracio, Thiago Ribeiro
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Percepção de padrões
Classificação
Processamento de imagens
Pattern perception
Classification
Image processing
title_short Reconhecimento de padrões por meio de floresta de caminhos ótimos
title_full Reconhecimento de padrões por meio de floresta de caminhos ótimos
title_fullStr Reconhecimento de padrões por meio de floresta de caminhos ótimos
title_full_unstemmed Reconhecimento de padrões por meio de floresta de caminhos ótimos
title_sort Reconhecimento de padrões por meio de floresta de caminhos ótimos
author Toracio, Thiago Ribeiro
author_facet Toracio, Thiago Ribeiro
author_role author
dc.contributor.advisor1.fl_str_mv Saito, Priscila Tiemi Maeda
dc.contributor.referee1.fl_str_mv Saito, Priscila Tiemi Maeda
dc.contributor.referee2.fl_str_mv Bugatti, Pedro Henrique
dc.contributor.referee3.fl_str_mv Sanches, Silvio Ricardo Rodrigues
dc.contributor.author.fl_str_mv Toracio, Thiago Ribeiro
contributor_str_mv Saito, Priscila Tiemi Maeda
Saito, Priscila Tiemi Maeda
Bugatti, Pedro Henrique
Sanches, Silvio Ricardo Rodrigues
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Percepção de padrões
Classificação
Processamento de imagens
Pattern perception
Classification
Image processing
dc.subject.por.fl_str_mv Percepção de padrões
Classificação
Processamento de imagens
Pattern perception
Classification
Image processing
description Atualmente existem grandes bases de dados disponíveis, devido aos avanços das tecnologias de aquisição e armazenamento dessas informações. No entanto, há uma grande quantidade de dados não rotulados em relação a uma pequena parte rotulada, tornando-se necessárias técnicas de aprendizado eficazes e eficientes para manipulação e análise dessas informações. Para o aprendizado, é necessário o reconhecimento de determinados padrões, os quais podem ser obtidos por descritores de imagens, que extraem propriedades visuais relacionadas à cor, forma e textura. Algumas características extraídas das imagens podem ser redundantes, outras são mais relevantes na discriminação das imagens. Por isto, após a extração das características das imagens, é importante a análise e a obtenção do vetor de características que melhor descreve o conjunto de dados, aplicando técnicas de redução de dimensionalidade, otimização ou normalizações. Em seguida, podem ser utilizados diferentes procedimentos (supervisionados, não supervisionados e semi-supervisionados) de aprendizado. Este trabalho tem como objetivo o estudo e a análise de técnicas mais efetivas e eficientes para descrição e classificação de bioimagens.
publishDate 2016
dc.date.issued.fl_str_mv 2016-06-20
dc.date.accessioned.fl_str_mv 2020-11-10T19:50:53Z
dc.date.available.fl_str_mv 2020-11-10T19:50:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TORACIO, Thiago Ribeiro. Reconhecimento de padrões por meio de floresta de caminhos ótimos. 2016. Trabalho de Conclusão de Curso (Graduação em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2016.
dc.identifier.uri.fl_str_mv http://repositorio.utfpr.edu.br/jspui/handle/1/7449
identifier_str_mv TORACIO, Thiago Ribeiro. Reconhecimento de padrões por meio de floresta de caminhos ótimos. 2016. Trabalho de Conclusão de Curso (Graduação em Análise e Desenvolvimento de Sistemas) - Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 2016.
url http://repositorio.utfpr.edu.br/jspui/handle/1/7449
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Cornelio Procopio
dc.publisher.program.fl_str_mv Tecnologia em Análise e Desenvolvimento de Sistemas
dc.publisher.initials.fl_str_mv UTFPR
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Cornelio Procopio
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
bitstream.url.fl_str_mv http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/1/license.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/2/CP_COADS_2016_1_07.pdf
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/3/CP_COADS_2016_1_07.pdf.txt
http://repositorio.utfpr.edu.br:8080/jspui/bitstream/1/7449/4/CP_COADS_2016_1_07.pdf.jpg
bitstream.checksum.fl_str_mv b9d82215ab23456fa2d8b49c5df1b95b
80c70fc3f31fa322f4a5dc753a3f1fa8
0f3433b47eecba6a9653ad45e230e504
57c2d227ac73534811369daa7e883532
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv
_version_ 1805923176377483264