Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
Texto Completo: | http://hdl.handle.net/10737/2235 |
Resumo: | O presente trabalho apresenta uma proposta de um sistema de detecção e classificação de faltas em linhas de transmissão, baseado em redes neurais artificiais. O banco de dados para o treinamento e validação da rede neural foi gerado através do software de análise de transientes ATP, com o auxílio de um programa computacional desenvolvido para gerar o arquivo de circuito base da simulação de cada caso. A implementação da rede neural foi feita na linguagem Python, com a utilização das bibliotecas Keras, Tensorflow e Scikit-Learn especificas para aplicações de machine learning. A rede neural desenvolvida possui 6 entradas, que corresponde a corrente e a tensão de cada fase da linha de transmissão, e 11 saídas, que correspondem a cada um dos estados de operação do sistema. Os resultados obtidos mostram que a utilização de redes neurais artificiais é viável para a detecção e classificação de faltas. |
id |
UVAT_09269bdb1ac673f4a44b30c66da5582c |
---|---|
oai_identifier_str |
oai:univates.br:10737/2235 |
network_acronym_str |
UVAT |
network_name_str |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
repository_id_str |
1 |
spelling |
Madruga, Ederson Pereirahttp://lattes.cnpq.br/8080628001402474Junges, Estevan Luiz2018-12-27T20:03:09Z2018-12-27T20:03:09Z2018-10-092018-07-09O presente trabalho apresenta uma proposta de um sistema de detecção e classificação de faltas em linhas de transmissão, baseado em redes neurais artificiais. O banco de dados para o treinamento e validação da rede neural foi gerado através do software de análise de transientes ATP, com o auxílio de um programa computacional desenvolvido para gerar o arquivo de circuito base da simulação de cada caso. A implementação da rede neural foi feita na linguagem Python, com a utilização das bibliotecas Keras, Tensorflow e Scikit-Learn especificas para aplicações de machine learning. A rede neural desenvolvida possui 6 entradas, que corresponde a corrente e a tensão de cada fase da linha de transmissão, e 11 saídas, que correspondem a cada um dos estados de operação do sistema. Os resultados obtidos mostram que a utilização de redes neurais artificiais é viável para a detecção e classificação de faltas.This document proposes a transmission line fault detection and classification system, based on artificial neural networks. The dataset used for training and validating the neural network was generated with the transient analysis software ATP, aided by a computational program developed to create the base circuit file for each simulation case. The neural network implementation was made with the Python programing language and using the libraries Keras, Tensorflow and Scikit-Learn, that are specific to machine learning applications. The proposed neural network has 6 inputs that correspond to the voltage and current of each transmission line phase and 11 outputs that corresponds to each one of the system estates. The results show that artificial neural networks are a viable option for the problem of detection and classification of electrical faults in transmission lines.-1JUNGES, Estevan Luiz. Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais. 2018. Monografia (Graduação em Engenharia Elétrica) – Universidade do Vale do Taquari - Univates, Lajeado, 09 jul. 2018. Disponível em: http://hdl.handle.net/10737/2235. http://hdl.handle.net/10737/2235http://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessENGTransmissãoDetecção de FaltasRedes Neurais ArtificiaisDetecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)instname:Centro Universitário Univates (UNIVATES)instacron:UNIVATESORIGINAL2018EstevanJunges.pdf2018EstevanJunges.pdfapplication/pdf1955474https://www.univates.br/bdu/bitstreams/ddea69f2-878b-4f8a-b2b6-a4d69f352fc9/downloade536fb95e05b3140db386c688cacd3e0MD51CC-LICENSElicense_urllicense_urltext/plain46https://www.univates.br/bdu/bitstreams/5974a1c1-cd42-414e-92bc-154f86e3c0ae/download6f1da3ff281999354d4abd56d1551468MD52license_textlicense_texttext/html; charset=utf-80https://www.univates.br/bdu/bitstreams/1c6b4afc-3971-4799-aaba-8c2a58dd4c2f/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://www.univates.br/bdu/bitstreams/04898d57-fedd-4868-b0f8-eff926e0404a/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain4602https://www.univates.br/bdu/bitstreams/305852bb-1910-4c2f-8872-0af211e4e821/download42df216ce172c17b16efbf3e10afeafcMD55TEXT2018EstevanJunges.pdf.txt2018EstevanJunges.pdf.txtExtracted texttext/plain98000https://www.univates.br/bdu/bitstreams/3e25e122-78c8-487e-9202-4a615b270201/download94651390f50440ac62082207d1d124f5MD58THUMBNAIL2018EstevanJunges.pdf.jpg2018EstevanJunges.pdf.jpgGenerated Thumbnailimage/jpeg4422https://www.univates.br/bdu/bitstreams/8b1a4fec-8bcb-43f7-9f2a-74f6bc9cf7d0/download0f1ba0e7ebd7bf9330b99e8a2649d753MD5910737/22352023-06-23 10:53:03.285http://creativecommons.org/licenses/by-sa/4.0/openAccessoai:univates.br:10737/2235https://www.univates.br/bduRepositório InstitucionalPRIhttp://www.univates.br/bdu_oai/requestopendoar:12023-06-23T10:53:03Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) - Centro Universitário Univates (UNIVATES)falseVEVSTU8gREUgREVQw5NTSVRPIC0gQklCTElPVEVDQSBESUdJVEFMIERBIFVOSVZBVEVTIChCRFUpCgpOb21lIGRvIGRlcG9zaXRhbnRlOiBESEFSQSBDQVJMRVNTTyBaQU1QSVZBCkUtbWFpbCBkbyBkZXBvc2l0YW50ZTogZGhhcmEuemFtcGl2YUB1bml2YXRlcy5icgpEYXRhOiBUdWUgT2N0IDA5IDEzOjQyOjE1IEJSVCAyMDE4CkNvbGXDp8OjbzogRW5nZW5oYXJpYSBFbMOpdHJpY2EKT2JyYTogRGV0ZWPDp8OjbyBlIGNsYXNzaWZpY2HDp8OjbyBkZSBmYWx0YXMgZW0gbGluaGFzIGRlIHRyYW5zbWlzc8OjbyB1dGlsaXphbmRvIHJlZGVzIG5ldXJhaXMgYXJ0aWZpY2lhaXMKQXV0b3I6IGRoYXJhLnphbXBpdmFAdW5pdmF0ZXMuYnIKCkNvbW8gY29sYWJvcmFkb3IgbmEgc3VibWlzc8OjbyBkYSBvYnJhLCBvIGRlcG9zaXRhbnRlIERIQVJBIENBUkxFU1NPIFpBTVBJVkEgCmRlY2xhcmEgbyByZWNlYmltZW50byBkbyBURVJNTyBERSBMSUNFTsOHQSBkYSBCSUJMSU9URUNBIERJR0lUQUwgREEgVU5JVkFURVMKKEJEVSkgcHJlZW5jaGlkbyBlIGFzc2luYWRvIHBlbG8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgCmRhIG9icmEsIGUgYWZpcm1hIGVzdGFyIHNlbmRvIGZpZGVkaWdubyBhb3MgZGFkb3MgaW5mb3JtYWRvcyBubyBtZXNtby4gCgpPIHRlcm1vIGRlIGxpY2Vuw6dhLCBjb21vIHNlZ3VlIGFiYWl4bywgZm9pIGRlZmluaWRvIHBlbGEgQXNzZXNzb3JpYSAKSnVyw61kaWNhIGRvIENlbnRybyBVbml2ZXJzaXTDoXJpbyBVbml2YXRlczoKCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpURVJNTyBERSBMSUNFTsOHQSAtIEJJQkxJT1RFQ0EgRElHSVRBTCBEQSBVTklWQVRFUyAoQkRVKQoKQ3Vyc28vUHJvZ3JhbWFfX19fX19fX19fX19fX19HcmF1IEFjYWTDqm1pY29fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KTmF0dXJlemEgZGEgT2JyYSAoKVRDQyAoKUFydGlnbyAoKUxpdnJvICgpQ2Fww610dWxvIGRlIExpdnJvICgpT3V0cm9fX19fX19fX18KVMOtdHVsbyBkYSBPYnJhX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCkRlZmVzYS9QdWJsaWNhw6fDo29fX19fX19fX19fX19BcnF1aXZvcyBhbmV4b3NfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpFbWJhcmdhZG8gYXTDqV9fX19fX19fX19fX19fX19Nb3Rpdm9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpFdmVudG8vUGVyacOzZGljb19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwrDk3Jnw6NvIGRlIEZvbWVudG9fX19fX19fX19fX19fSWRlbnRpZmljYWRvcl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KQ8OzZC4gSWRlbnRpZmljYWRvcl9fX19fX19fX19fUmVjZWJpbWVudG9fX19fX19fX19EaXNwb27DrXZlbCBuYSBCRFVfX19fX19fX19fCgoxLiBPIEFVVE9SIGRlY2xhcmEgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIE9CUkEgZSB0ZW0gcGxlbmEgCmRpc3BvbmliaWxpZGFkZSBkb3MgbWVzbW9zLCBleGltaW5kbyBhIFVOSVZBVEVTIGRlIHRvZGEgZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlLgoKMi4gTyBBVVRPUiBkZWNsYXJhIHF1ZSwgcmVsYXRpdmFtZW50ZSDDoCBPQlJBLCByZXNwZWl0b3Ugb3MgZGlyZWl0b3MgaW50ZWxlY3R1YWlzIApkZSB0ZXJjZWlyb3MgZSBjdW1wcml1IGNvbSBhcyBvYnJpZ2HDp8O1ZXMgbGVnYWlzIG91IGNvbnRyYXR1YWlzIGNvcnJlbGF0YXMsIApleGltaW5kbyBhIFVOSVZBVEVTIGRlIHRvZGEgZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlLgoKMy4gTyBBVVRPUiBsaWNlbmNpYSBhIHJlcHJvZHXDp8OjbyBncmF0dWl0YSBlbSBmb3JtYXRvIGRpZ2l0YWwgZSBhIGRpc3BvbmliaWxpemHDp8OjbyAKZ3JhdHVpdGEgb3Ugb25lcm9zYSBkYSBPQlJBIG5hIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBVbml2YXRlcywgcGFyYSB0b2RvcyBvcyAKdXN1w6FyaW9zLCBuYSBmb3JtYSBkZWZpbmlkYSBwZWxhIFVOSVZBVEVTLCBjaWVudGUgZGUgcXVlIGEgaW5jbHVzw6NvIGRhIE9CUkEgCm5hIEJpYmxpb3RlY2EgaW1wb3J0YXLDoSB0YW1iw6ltIG5vIGxpY2VuY2lhbWVudG8gcG9yIG1laW8gZGEgQ3JlYXRpdmUgQ29tbW9ucy4KCjQuIEEgVU5JVkFURVMgbmFkYSBkZXZlcsOhIGFvIEFVVE9SIHBlbGEgcmVwcm9kdcOnw6NvIGUgZGlzcG9uaWJpbGl6YcOnw6NvIGRhIE9CUkEsIApjb25mb3JtZSBhY2ltYSBwcmV2aXN0bywgbWVzbW8gc2UgbyBhY2Vzc28gZG9zIHVzdcOhcmlvcyBkYSBCaWJsaW90ZWNhIERpZ2l0YWwgCmRhIFVuaXZhdGVzIGZvciBhIHTDrXR1bG8gb25lcm9zby4KCjUuIE8gQVVUT1IgZmljYSBjaWVudGUgZGUgcXVlLCBkaXNwb25pYmlsaXphZGEgYSBPQlJBIG5hIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSAKVW5pdmF0ZXMsIG9zIHVzdcOhcmlvcyBwb2RlcsOjbyB1dGlsaXrDoS1sYSBjb25mb3JtZSBhcyBub3JtYXMgZGEgQ3JlYXRpdmUgQ29tbW9ucy4KCjYuIE8gQVVUT1IqOgpQZXJtaXRlIG8gdXNvIGNvbWVyY2lhbCBkYSBzdWEgT0JSQT8qIChGb250ZTogaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvY2hvb3NlLykgCihNYXJjYXIgYXBlbmFzIHVtYSBvcMOnw6NvKQooICkgU2ltIChPIGxpY2VuY2lhZG9yIHBlcm1pdGUgYSBvdXRyb3MgY29waWFyLCBkaXN0cmlidWlyLCBleGliaXIgZSBleGVjdXRhciBhIApPQlJBLCBpbmNsdXNpdmUgcGFyYSBmaW5zIGNvbWVyY2lhaXMpLgooICkgTsOjbyAoTyBsaWNlbmNpYW50ZSBwZXJtaXRlIGEgb3V0cm9zIGNvcGlhciwgZGlzdHJpYnVpciwgZXhpYmlyIGUgZXhlY3V0YXIgYSAKT0JSQSBzb21lbnRlIGNvbSBmaW5zIG7Do28gY29tZXJjaWFpcykuCgpQZXJtaXRlIG1vZGlmaWNhw6fDtWVzIGVtIHN1YSBPQlJBPyogKEZvbnRlOiBodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9jaG9vc2UvKSAKKE1hcmNhciBhcGVuYXMgdW1hIG9ww6fDo28pCiggKSBTaW0gKE8gbGljZW5jaWFudGUgcGVybWl0ZSBhIG91dHJvcyBjb3BpYXIsIGRpc3RyaWJ1aXIsIGV4aWJpciBlIGV4ZWN1dGFyIGEgCk9CUkEsIGJlbSBjb21vIHVzw6EtbGEgY29tbyBiYXNlIHBhcmEgb2JyYXMgZGVyaXZhZGFzKS4KKCApIFNpbSwgY29udGFudG8gcXVlIG9zIG91dHJvcyBjb21wYXJ0aWxoZW0gZGUgZm9ybWEgc2VtZWxoYW50ZSAoTyBsaWNlbmNpYWRvciAKcGVybWl0ZSBhb3Mgb3V0cm9zIGRpc3RyaWJ1aXIgb2JyYXMgZGVyaXZhdGl2YXMgc29tZW50ZSBzb2IgYSBtZXNtYSBsaWNlbsOnYSBvdSAKb3V0cmEgY29tcGF0w612ZWwgY29tIGEgcXVlIHJlZ2UgYSBPQlJBIGRvIGxpY2VuY2lhZG9yKS4KKCApIE7Do28gKE8gbGljZW5jaWFudGUgcGVybWl0ZSBhIG91dHJvcyBjb3BpYXIsIGRpc3RyaWJ1aXIgZSB0cmFuc21pdGlyIGFwZW5hcyAKY8OzcGlhcyBpbmFsdGVyYWRhcyBkYSBPQlJBIOKAkyBuw6NvIHBlcm1pdGUgb2JyYXMgZGVyaXZhZGFzKS4KCjcuIEEgcHJlc2VudGUgbGljZW7Dp2EsIG5vIHF1ZSBjb3ViZXIsIHBvZGVyw6Egc2VyIGNhbmNlbGFkYSBtZWRpYW50ZSBhdmlzbyBmb3JtYWwgCmRvIEFVVE9SLCDDoCBVTklWQVRFUywgY29tIGFudGVjZWTDqm5jaWEgbcOtbmltYSBkZSA5MCBkaWFzLCBzZW0gcHJlanVkaWNhciBvcyBhdG9zIApwcmF0aWNhZG9zIG5hIHN1YSB2aWfDqm5jaWEuCgpfX19fX19ffF9fX19fX19fX19ffF9fX19fX19fX19fX19fX198X19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX3xfX19fX19fX19fX3xfX19fX19fX19fX19fX19ffF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCl9fX19fX198X19fX19fX19fX198X19fX19fX19fX19fX19fX3xfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19ffF9fX19fX19fX19ffF9fX19fX19fX19fX19fX198X19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX3xfX19fX19fX19fX3xfX19fX19fX19fX19fX19ffF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCkPDs2RpZ28gfENQRiAgICAgICAgfE5vbWUgICAgICAgICAgICB8QXNzaW5hdHVyYSBkbyBEZXRlbnRvciBkb3MgRGlyZWl0b3MgQXV0b3JhaXMKCkxvY2FsIF9fX19fX19fX19fX19fX19fX19fIERhdGEgIF9fX19fL19fX19fXy9fX19fX19fCgoqIENhbXBvcyBkZSBwcmVlbmNoaW1lbnRvIG9icmlnYXTDs3Jpby4KKioqIEFwZW5hcyBzZXLDo28gYWNlaXRvcyB0ZXJtb3Mgb3JpZ2luYWlzIGUgYWRlcXVhZGFtZW50ZSBwcmVlbmNoaWRvcy4K |
dc.title.pt_BR.fl_str_mv |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais |
title |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais |
spellingShingle |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais Junges, Estevan Luiz ENG Transmissão Detecção de Faltas Redes Neurais Artificiais |
title_short |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais |
title_full |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais |
title_fullStr |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais |
title_full_unstemmed |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais |
title_sort |
Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais |
author |
Junges, Estevan Luiz |
author_facet |
Junges, Estevan Luiz |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Madruga, Ederson Pereira |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8080628001402474 |
dc.contributor.author.fl_str_mv |
Junges, Estevan Luiz |
contributor_str_mv |
Madruga, Ederson Pereira |
dc.subject.cnpq.fl_str_mv |
ENG |
topic |
ENG Transmissão Detecção de Faltas Redes Neurais Artificiais |
dc.subject.por.fl_str_mv |
Transmissão Detecção de Faltas Redes Neurais Artificiais |
description |
O presente trabalho apresenta uma proposta de um sistema de detecção e classificação de faltas em linhas de transmissão, baseado em redes neurais artificiais. O banco de dados para o treinamento e validação da rede neural foi gerado através do software de análise de transientes ATP, com o auxílio de um programa computacional desenvolvido para gerar o arquivo de circuito base da simulação de cada caso. A implementação da rede neural foi feita na linguagem Python, com a utilização das bibliotecas Keras, Tensorflow e Scikit-Learn especificas para aplicações de machine learning. A rede neural desenvolvida possui 6 entradas, que corresponde a corrente e a tensão de cada fase da linha de transmissão, e 11 saídas, que correspondem a cada um dos estados de operação do sistema. Os resultados obtidos mostram que a utilização de redes neurais artificiais é viável para a detecção e classificação de faltas. |
publishDate |
2018 |
dc.date.submitted.none.fl_str_mv |
2018-07-09 |
dc.date.accessioned.fl_str_mv |
2018-12-27T20:03:09Z |
dc.date.available.fl_str_mv |
2018-12-27T20:03:09Z |
dc.date.issued.fl_str_mv |
2018-10-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
JUNGES, Estevan Luiz. Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais. 2018. Monografia (Graduação em Engenharia Elétrica) – Universidade do Vale do Taquari - Univates, Lajeado, 09 jul. 2018. Disponível em: http://hdl.handle.net/10737/2235. |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10737/2235 |
identifier_str_mv |
JUNGES, Estevan Luiz. Detecção e classificação de faltas em linhas de transmissão utilizando redes neurais artificiais. 2018. Monografia (Graduação em Engenharia Elétrica) – Universidade do Vale do Taquari - Univates, Lajeado, 09 jul. 2018. Disponível em: http://hdl.handle.net/10737/2235. |
url |
http://hdl.handle.net/10737/2235 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) instname:Centro Universitário Univates (UNIVATES) instacron:UNIVATES |
instname_str |
Centro Universitário Univates (UNIVATES) |
instacron_str |
UNIVATES |
institution |
UNIVATES |
reponame_str |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
collection |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) |
bitstream.url.fl_str_mv |
https://www.univates.br/bdu/bitstreams/ddea69f2-878b-4f8a-b2b6-a4d69f352fc9/download https://www.univates.br/bdu/bitstreams/5974a1c1-cd42-414e-92bc-154f86e3c0ae/download https://www.univates.br/bdu/bitstreams/1c6b4afc-3971-4799-aaba-8c2a58dd4c2f/download https://www.univates.br/bdu/bitstreams/04898d57-fedd-4868-b0f8-eff926e0404a/download https://www.univates.br/bdu/bitstreams/305852bb-1910-4c2f-8872-0af211e4e821/download https://www.univates.br/bdu/bitstreams/3e25e122-78c8-487e-9202-4a615b270201/download https://www.univates.br/bdu/bitstreams/8b1a4fec-8bcb-43f7-9f2a-74f6bc9cf7d0/download |
bitstream.checksum.fl_str_mv |
e536fb95e05b3140db386c688cacd3e0 6f1da3ff281999354d4abd56d1551468 d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 42df216ce172c17b16efbf3e10afeafc 94651390f50440ac62082207d1d124f5 0f1ba0e7ebd7bf9330b99e8a2649d753 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) - Centro Universitário Univates (UNIVATES) |
repository.mail.fl_str_mv |
|
_version_ |
1813262374681968640 |