Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás

Detalhes bibliográficos
Autor(a) principal: Marder, Munique
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)
Texto Completo: http://hdl.handle.net/10737/2814
Resumo: Os setores agrícolas e agroindustriais geram resíduos ricos em matéria orgânica, principalmente os dejetos animais. Estes, por sua vez, podem ser degradados por processos biológicos e aproveitados como biomassas na geração de bioenergia em sistemas de digestão anaeróbia. O uso de co-digestão pode otimizar a produção de biogás e metano e, ao final do processo, sevir como inoculante na iniciação dos processos de digestão anaeróbia. Neste sentido, o objetivo deste estudo foi desenvolver, caracterizar e avaliar a eficiência de inoculantes, utilizando co-digestão anaeróbica de diferentes resíduos do agronegócio como biomassa em temperatura controlada e ambiente, e formular um inoculante com uma mistura de microrganismos isolados visando otimizar a produção de biogás e metano. Para isto, foram preparados quatro inoculantes (constituídos de dejeto suíno, aves e bovino), que foram incubados anaerobicamente por 72 dias e aclimatados em temperatura controlada (35o C) e ambiente (28 ± 3,5° C). Um inoculante, em cada temperatura, foi alimentado com uma mistura de celulose microcristalina, gelatina, latose e resíduo de óleo de cozinha. Ao final, a identificação da comunidade microbiana mostrou que os inoculantes apresentaram diferenças importantes entre as duas temperaturas avaliadas, Bacteroidetes foi o filo mais representativo em inoculantes a 28° C e Firmicutes a 35° C, e destaca-se que o uso dos inoculantes (alimentado e não alimentado) melhora o rendimento da produção de biogás e metano 28 °C, atingindo valores semelhantes na faixa ideal de temperatura (35° C). O isolamento de 10 microrganismos anaeróbicos facultativos dos inoculantes mostrou que eles pertencem ao filo Firmicutes, famílias Paenibacillaceae e Bacillaceae. A adição desta mistura de microrganismos não melhorou a produção de biogás nas diferentes temperaturas, no entanto, mais testes serão necessários para avaliar o potencial destes microrganismos. A partir dos resultados obtidos pode-se concluir que o uso de inoculantes em sistemas de digestão anaeróbica melhora a eficiência da produção de biogás e metano em temperaturas inferiores (28 °C ±3,5) a considerada ideal (35 oC), o que pode permitir o uso desse tipo de produção de energia nas regiões que apresentam temperaturas ligeiramente mais baixas.
id UVAT_a7ff4efebf5597e34edd89d5446ac687
oai_identifier_str oai:univates.br:10737/2814
network_acronym_str UVAT
network_name_str Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)
repository_id_str 1
spelling Konrad, OdoricoGranada, Camille Eichelbergerhttp://lattes.cnpq.br/1836592557536308Heidrich, DaianeBucker, FrancielleColla, Luciane Mariahttp://lattes.cnpq.br/6070031909886243Marder, Munique2020-09-18T00:56:21Z2020-09-18T00:56:21Z2020-022020-02-21Os setores agrícolas e agroindustriais geram resíduos ricos em matéria orgânica, principalmente os dejetos animais. Estes, por sua vez, podem ser degradados por processos biológicos e aproveitados como biomassas na geração de bioenergia em sistemas de digestão anaeróbia. O uso de co-digestão pode otimizar a produção de biogás e metano e, ao final do processo, sevir como inoculante na iniciação dos processos de digestão anaeróbia. Neste sentido, o objetivo deste estudo foi desenvolver, caracterizar e avaliar a eficiência de inoculantes, utilizando co-digestão anaeróbica de diferentes resíduos do agronegócio como biomassa em temperatura controlada e ambiente, e formular um inoculante com uma mistura de microrganismos isolados visando otimizar a produção de biogás e metano. Para isto, foram preparados quatro inoculantes (constituídos de dejeto suíno, aves e bovino), que foram incubados anaerobicamente por 72 dias e aclimatados em temperatura controlada (35o C) e ambiente (28 ± 3,5° C). Um inoculante, em cada temperatura, foi alimentado com uma mistura de celulose microcristalina, gelatina, latose e resíduo de óleo de cozinha. Ao final, a identificação da comunidade microbiana mostrou que os inoculantes apresentaram diferenças importantes entre as duas temperaturas avaliadas, Bacteroidetes foi o filo mais representativo em inoculantes a 28° C e Firmicutes a 35° C, e destaca-se que o uso dos inoculantes (alimentado e não alimentado) melhora o rendimento da produção de biogás e metano 28 °C, atingindo valores semelhantes na faixa ideal de temperatura (35° C). O isolamento de 10 microrganismos anaeróbicos facultativos dos inoculantes mostrou que eles pertencem ao filo Firmicutes, famílias Paenibacillaceae e Bacillaceae. A adição desta mistura de microrganismos não melhorou a produção de biogás nas diferentes temperaturas, no entanto, mais testes serão necessários para avaliar o potencial destes microrganismos. A partir dos resultados obtidos pode-se concluir que o uso de inoculantes em sistemas de digestão anaeróbica melhora a eficiência da produção de biogás e metano em temperaturas inferiores (28 °C ±3,5) a considerada ideal (35 oC), o que pode permitir o uso desse tipo de produção de energia nas regiões que apresentam temperaturas ligeiramente mais baixas.The agricultural and agroindustrial sectors generate waste rich in organic matter, mainly animal waste. These wastes can be degraded by biological processes and used as biomass in the generation of bioenergy. The use of co-digestion can optimize the production of biogas and methane and, at the end of the process, the biomass can be used as inoculant for a new anaerobic digestion process. In this sense, the objective of this study was to develop, characterize and evaluate the efficiency of inoculants, using anaerobic co-digestion of different residues from agribusiness as biomass at controlled and environmental temperature, and to formulate an inoculant with a mixture of isolated microorganisms in order to optimize production of biogas and methane. For this pourpose, four inoculants (composed by swine, poultry and bovine manures) were incubated anaerobically for 72 days and acclimatized under controlled (35 oC) and environmental (28 ± 3.5 °C) temperatures. One inoculant of each temperature was fed with a mixture of microcrystalline cellulose, gelatin, latose and cooking oil residue. In the end of inoculat preparation, the identification of the microbial showed that inoculants presented important differences between the two temperatures evaluated, Bacteroidetes was the most representative phylum in inoculants at 28 °C and Firmicutes at 35 °C. The use of inoculants (fed or non-fed) improves the yield of biogas and methane production at 28 ° C, reaching similar values to ideal temperature range (35 °C). The isolation of 10 facultative anaerobic microorganisms from the inoculants showed that they belong to the phylum Firmicutes, Paenibacillaceae and Bacillaceae families. The addition of mixture of these microorganisms did not improve the biogas production at different temperatures, however, more tests will be needed to evaluate the potential of these microorganisms. From the results obtained, it can be concluded that the use of inoculants in anaerobic digestion systems improves the efficiency of the biogas production and methane at lower temperatures (28 ° C ±3.5) than that considered ideal (35 °C), which may allow the use of this type of energy production in regions with slightly lower temperatures.-1MARDER, Munique. Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás. 2020. Dissertação (Mestrado) – Curso de Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, 21 fev. 2020. Disponível em: http://hdl.handle.net/10737/2814. http://hdl.handle.net/10737/2814http://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/embargoedAccessCBBiodigestão anaeróbiaInoculanteCo-digestãoTemperatura ambienteAnaerobic biodigestionInnoculantCo-digestionRoom temperatureIdentificação e caracterização de microrganismos visando maior eficiência na produção de biogásinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPPGBiotec;Biotecnologiaporreponame:Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)instname:Centro Universitário Univates (UNIVATES)instacron:UNIVATESORIGINAL2020MuniqueMarder.pdf2020MuniqueMarder.pdfapplication/pdf2336822https://www.univates.br/bdu/bitstreams/ba838d3b-3eaf-4d31-9b37-968f56a625bf/download26fddcec42ebb780f85c15666089dddeMD51CC-LICENSElicense_urllicense_urltext/plain46https://www.univates.br/bdu/bitstreams/0ca70461-53ba-4bfe-a503-b2f5f4787ac0/download587cd8ffae15c8598ed3c46d248a3f38MD52license_textlicense_texttext/html; charset=utf-80https://www.univates.br/bdu/bitstreams/fa145d7d-13f1-43eb-8147-5adf4479d4e9/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://www.univates.br/bdu/bitstreams/3c79a5ac-72fa-4eae-ad30-559d4200bdca/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain4597https://www.univates.br/bdu/bitstreams/b6995cd3-b6f3-4419-a1f3-ac14d7c95644/download9ff8881dd5e9ac6239355604ad97a135MD55TEXT2020MuniqueMarder.pdf.txt2020MuniqueMarder.pdf.txtExtracted texttext/plain102120https://www.univates.br/bdu/bitstreams/c687acf6-a88b-4a88-9acd-0ecba00bded1/download6ad7f3a5f6a5977a25f6fe2bdc5bf87bMD512THUMBNAIL2020MuniqueMarder.pdf.jpg2020MuniqueMarder.pdf.jpgGenerated Thumbnailimage/jpeg2664https://www.univates.br/bdu/bitstreams/f2ec218d-c43c-46c9-ab7e-1c64fc816d36/download7969fde5b15c129cd8564f5cd9134623MD51310737/28142023-06-26 13:08:56.15http://creativecommons.org/licenses/by-nd/4.0/embargoedAccessoai:univates.br:10737/2814https://www.univates.br/bduRepositório InstitucionalPRIhttp://www.univates.br/bdu_oai/requestopendoar:12023-06-26T13:08:56Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) - Centro Universitário Univates (UNIVATES)falseVEVSTU8gREUgREVQw5NTSVRPIC0gQklCTElPVEVDQSBESUdJVEFMIERBIFVOSVZBVEVTIChCRFUpCgpOb21lIGRvIGRlcG9zaXRhbnRlOiBESEFSQSBDQVJMRVNTTyBaQU1QSVZBCkUtbWFpbCBkbyBkZXBvc2l0YW50ZTogZGhhcmEuemFtcGl2YUB1bml2YXRlcy5icgpEYXRhOiBUdWUgQXVnIDI1IDE2OjEzOjQ5IEJSVCAyMDIwCkNvbGXDp8OjbzogQmlvdGVjbm9sb2dpYQpPYnJhOiBJZGVudGlmaWNhw6fDo28gZSBjYXJhY3Rlcml6YcOnw6NvIGRlIG1pY3JvcmdhbmlzbW9zIHZpc2FuZG8gbWFpb3IgZWZpY2nDqm5jaWEgbmEgcHJvZHXDp8OjbyBkZSBiaW9nw6FzCkF1dG9yOiBkaGFyYS56YW1waXZhQHVuaXZhdGVzLmJyCgpDb21vIGNvbGFib3JhZG9yIG5hIHN1Ym1pc3PDo28gZGEgb2JyYSwgbyBkZXBvc2l0YW50ZSBESEFSQSBDQVJMRVNTTyBaQU1QSVZBIApkZWNsYXJhIG8gcmVjZWJpbWVudG8gZG8gVEVSTU8gREUgTElDRU7Dh0EgZGEgQklCTElPVEVDQSBESUdJVEFMIERBIFVOSVZBVEVTCihCRFUpIHByZWVuY2hpZG8gZSBhc3NpbmFkbyBwZWxvIGF1dG9yIG91IHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIApkYSBvYnJhLCBlIGFmaXJtYSBlc3RhciBzZW5kbyBmaWRlZGlnbm8gYW9zIGRhZG9zIGluZm9ybWFkb3Mgbm8gbWVzbW8uIAoKTyB0ZXJtbyBkZSBsaWNlbsOnYSwgY29tbyBzZWd1ZSBhYmFpeG8sIGZvaSBkZWZpbmlkbyBwZWxhIEFzc2Vzc29yaWEgCkp1csOtZGljYSBkbyBDZW50cm8gVW5pdmVyc2l0w6FyaW8gVW5pdmF0ZXM6CgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KVEVSTU8gREUgTElDRU7Dh0EgLSBCSUJMSU9URUNBIERJR0lUQUwgREEgVU5JVkFURVMgKEJEVSkKCkN1cnNvL1Byb2dyYW1hX19fX19fX19fX19fX19fR3JhdSBBY2Fkw6ptaWNvX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCk5hdHVyZXphIGRhIE9icmEgKClUQ0MgKClBcnRpZ28gKClMaXZybyAoKUNhcMOtdHVsbyBkZSBMaXZybyAoKU91dHJvX19fX19fX19fClTDrXR1bG8gZGEgT2JyYV9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpEZWZlc2EvUHVibGljYcOnw6NvX19fX19fX19fX19fQXJxdWl2b3MgYW5leG9zX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KRW1iYXJnYWRvIGF0w6lfX19fX19fX19fX19fX19fTW90aXZvX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KRXZlbnRvL1BlcmnDs2RpY29fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18Kw5NyZ8OjbyBkZSBGb21lbnRvX19fX19fX19fX19fX0lkZW50aWZpY2Fkb3JfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCkPDs2QuIElkZW50aWZpY2Fkb3JfX19fX19fX19fX1JlY2ViaW1lbnRvX19fX19fX19fRGlzcG9uw612ZWwgbmEgQkRVX19fX19fX19fXwoKMS4gTyBBVVRPUiBkZWNsYXJhIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBPQlJBIGUgdGVtIHBsZW5hIApkaXNwb25pYmlsaWRhZGUgZG9zIG1lc21vcywgZXhpbWluZG8gYSBVTklWQVRFUyBkZSB0b2RhIGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZS4KCjIuIE8gQVVUT1IgZGVjbGFyYSBxdWUsIHJlbGF0aXZhbWVudGUgw6AgT0JSQSwgcmVzcGVpdG91IG9zIGRpcmVpdG9zIGludGVsZWN0dWFpcyAKZGUgdGVyY2Vpcm9zIGUgY3VtcHJpdSBjb20gYXMgb2JyaWdhw6fDtWVzIGxlZ2FpcyBvdSBjb250cmF0dWFpcyBjb3JyZWxhdGFzLCAKZXhpbWluZG8gYSBVTklWQVRFUyBkZSB0b2RhIGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZS4KCjMuIE8gQVVUT1IgbGljZW5jaWEgYSByZXByb2R1w6fDo28gZ3JhdHVpdGEgZW0gZm9ybWF0byBkaWdpdGFsIGUgYSBkaXNwb25pYmlsaXphw6fDo28gCmdyYXR1aXRhIG91IG9uZXJvc2EgZGEgT0JSQSBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGEgVW5pdmF0ZXMsIHBhcmEgdG9kb3Mgb3MgCnVzdcOhcmlvcywgbmEgZm9ybWEgZGVmaW5pZGEgcGVsYSBVTklWQVRFUywgY2llbnRlIGRlIHF1ZSBhIGluY2x1c8OjbyBkYSBPQlJBIApuYSBCaWJsaW90ZWNhIGltcG9ydGFyw6EgdGFtYsOpbSBubyBsaWNlbmNpYW1lbnRvIHBvciBtZWlvIGRhIENyZWF0aXZlIENvbW1vbnMuCgo0LiBBIFVOSVZBVEVTIG5hZGEgZGV2ZXLDoSBhbyBBVVRPUiBwZWxhIHJlcHJvZHXDp8OjbyBlIGRpc3BvbmliaWxpemHDp8OjbyBkYSBPQlJBLCAKY29uZm9ybWUgYWNpbWEgcHJldmlzdG8sIG1lc21vIHNlIG8gYWNlc3NvIGRvcyB1c3XDoXJpb3MgZGEgQmlibGlvdGVjYSBEaWdpdGFsIApkYSBVbml2YXRlcyBmb3IgYSB0w610dWxvIG9uZXJvc28uCgo1LiBPIEFVVE9SIGZpY2EgY2llbnRlIGRlIHF1ZSwgZGlzcG9uaWJpbGl6YWRhIGEgT0JSQSBuYSBCaWJsaW90ZWNhIERpZ2l0YWwgZGEgClVuaXZhdGVzLCBvcyB1c3XDoXJpb3MgcG9kZXLDo28gdXRpbGl6w6EtbGEgY29uZm9ybWUgYXMgbm9ybWFzIGRhIENyZWF0aXZlIENvbW1vbnMuCgo2LiBPIEFVVE9SKjoKUGVybWl0ZSBvIHVzbyBjb21lcmNpYWwgZGEgc3VhIE9CUkE/KiAoRm9udGU6IGh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2Nob29zZS8pIAooTWFyY2FyIGFwZW5hcyB1bWEgb3DDp8OjbykKKCApIFNpbSAoTyBsaWNlbmNpYWRvciBwZXJtaXRlIGEgb3V0cm9zIGNvcGlhciwgZGlzdHJpYnVpciwgZXhpYmlyIGUgZXhlY3V0YXIgYSAKT0JSQSwgaW5jbHVzaXZlIHBhcmEgZmlucyBjb21lcmNpYWlzKS4KKCApIE7Do28gKE8gbGljZW5jaWFudGUgcGVybWl0ZSBhIG91dHJvcyBjb3BpYXIsIGRpc3RyaWJ1aXIsIGV4aWJpciBlIGV4ZWN1dGFyIGEgCk9CUkEgc29tZW50ZSBjb20gZmlucyBuw6NvIGNvbWVyY2lhaXMpLgoKUGVybWl0ZSBtb2RpZmljYcOnw7VlcyBlbSBzdWEgT0JSQT8qIChGb250ZTogaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvY2hvb3NlLykgCihNYXJjYXIgYXBlbmFzIHVtYSBvcMOnw6NvKQooICkgU2ltIChPIGxpY2VuY2lhbnRlIHBlcm1pdGUgYSBvdXRyb3MgY29waWFyLCBkaXN0cmlidWlyLCBleGliaXIgZSBleGVjdXRhciBhIApPQlJBLCBiZW0gY29tbyB1c8OhLWxhIGNvbW8gYmFzZSBwYXJhIG9icmFzIGRlcml2YWRhcykuCiggKSBTaW0sIGNvbnRhbnRvIHF1ZSBvcyBvdXRyb3MgY29tcGFydGlsaGVtIGRlIGZvcm1hIHNlbWVsaGFudGUgKE8gbGljZW5jaWFkb3IgCnBlcm1pdGUgYW9zIG91dHJvcyBkaXN0cmlidWlyIG9icmFzIGRlcml2YXRpdmFzIHNvbWVudGUgc29iIGEgbWVzbWEgbGljZW7Dp2Egb3UgCm91dHJhIGNvbXBhdMOtdmVsIGNvbSBhIHF1ZSByZWdlIGEgT0JSQSBkbyBsaWNlbmNpYWRvcikuCiggKSBOw6NvIChPIGxpY2VuY2lhbnRlIHBlcm1pdGUgYSBvdXRyb3MgY29waWFyLCBkaXN0cmlidWlyIGUgdHJhbnNtaXRpciBhcGVuYXMgCmPDs3BpYXMgaW5hbHRlcmFkYXMgZGEgT0JSQSDigJMgbsOjbyBwZXJtaXRlIG9icmFzIGRlcml2YWRhcykuCgo3LiBBIHByZXNlbnRlIGxpY2Vuw6dhLCBubyBxdWUgY291YmVyLCBwb2RlcsOhIHNlciBjYW5jZWxhZGEgbWVkaWFudGUgYXZpc28gZm9ybWFsIApkbyBBVVRPUiwgw6AgVU5JVkFURVMsIGNvbSBhbnRlY2Vkw6puY2lhIG3DrW5pbWEgZGUgOTAgZGlhcywgc2VtIHByZWp1ZGljYXIgb3MgYXRvcyAKcHJhdGljYWRvcyBuYSBzdWEgdmlnw6puY2lhLgoKX19fX19fX3xfX19fX19fX19fX3xfX19fX19fX19fX19fX19ffF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCl9fX19fX198X19fX19fX19fX198X19fX19fX19fX19fX19fX3xfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19ffF9fX19fX19fX19ffF9fX19fX19fX19fX19fX198X19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KX19fX19fX3xfX19fX19fX19fX3xfX19fX19fX19fX19fX19ffF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fCl9fX19fX198X19fX19fX19fX198X19fX19fX19fX19fX19fX3xfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpDw7NkaWdvIHxDUEYgICAgICAgIHxOb21lICAgICAgICAgICAgfEFzc2luYXR1cmEgZG8gRGV0ZW50b3IgZG9zIERpcmVpdG9zIEF1dG9yYWlzCgpMb2NhbCBfX19fX19fX19fX19fX19fX19fXyBEYXRhICBfX19fXy9fX19fX18vX19fX19fXwoKKiBDYW1wb3MgZGUgcHJlZW5jaGltZW50byBvYnJpZ2F0w7NyaW8uCioqKiBBcGVuYXMgc2Vyw6NvIGFjZWl0b3MgdGVybW9zIG9yaWdpbmFpcyBlIGFkZXF1YWRhbWVudGUgcHJlZW5jaGlkb3MuCg==
dc.title.pt_BR.fl_str_mv Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
title Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
spellingShingle Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
Marder, Munique
CB
Biodigestão anaeróbia
Inoculante
Co-digestão
Temperatura ambiente
Anaerobic biodigestion
Innoculant
Co-digestion
Room temperature
title_short Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
title_full Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
title_fullStr Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
title_full_unstemmed Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
title_sort Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás
author Marder, Munique
author_facet Marder, Munique
author_role author
dc.contributor.advisor-co1.fl_str_mv Konrad, Odorico
dc.contributor.advisor1.fl_str_mv Granada, Camille Eichelberger
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1836592557536308
dc.contributor.referee1.fl_str_mv Heidrich, Daiane
Bucker, Francielle
Colla, Luciane Maria
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6070031909886243
dc.contributor.author.fl_str_mv Marder, Munique
contributor_str_mv Konrad, Odorico
Granada, Camille Eichelberger
Heidrich, Daiane
Bucker, Francielle
Colla, Luciane Maria
dc.subject.cnpq.fl_str_mv CB
topic CB
Biodigestão anaeróbia
Inoculante
Co-digestão
Temperatura ambiente
Anaerobic biodigestion
Innoculant
Co-digestion
Room temperature
dc.subject.por.fl_str_mv Biodigestão anaeróbia
Inoculante
Co-digestão
Temperatura ambiente
Anaerobic biodigestion
Innoculant
Co-digestion
Room temperature
description Os setores agrícolas e agroindustriais geram resíduos ricos em matéria orgânica, principalmente os dejetos animais. Estes, por sua vez, podem ser degradados por processos biológicos e aproveitados como biomassas na geração de bioenergia em sistemas de digestão anaeróbia. O uso de co-digestão pode otimizar a produção de biogás e metano e, ao final do processo, sevir como inoculante na iniciação dos processos de digestão anaeróbia. Neste sentido, o objetivo deste estudo foi desenvolver, caracterizar e avaliar a eficiência de inoculantes, utilizando co-digestão anaeróbica de diferentes resíduos do agronegócio como biomassa em temperatura controlada e ambiente, e formular um inoculante com uma mistura de microrganismos isolados visando otimizar a produção de biogás e metano. Para isto, foram preparados quatro inoculantes (constituídos de dejeto suíno, aves e bovino), que foram incubados anaerobicamente por 72 dias e aclimatados em temperatura controlada (35o C) e ambiente (28 ± 3,5° C). Um inoculante, em cada temperatura, foi alimentado com uma mistura de celulose microcristalina, gelatina, latose e resíduo de óleo de cozinha. Ao final, a identificação da comunidade microbiana mostrou que os inoculantes apresentaram diferenças importantes entre as duas temperaturas avaliadas, Bacteroidetes foi o filo mais representativo em inoculantes a 28° C e Firmicutes a 35° C, e destaca-se que o uso dos inoculantes (alimentado e não alimentado) melhora o rendimento da produção de biogás e metano 28 °C, atingindo valores semelhantes na faixa ideal de temperatura (35° C). O isolamento de 10 microrganismos anaeróbicos facultativos dos inoculantes mostrou que eles pertencem ao filo Firmicutes, famílias Paenibacillaceae e Bacillaceae. A adição desta mistura de microrganismos não melhorou a produção de biogás nas diferentes temperaturas, no entanto, mais testes serão necessários para avaliar o potencial destes microrganismos. A partir dos resultados obtidos pode-se concluir que o uso de inoculantes em sistemas de digestão anaeróbica melhora a eficiência da produção de biogás e metano em temperaturas inferiores (28 °C ±3,5) a considerada ideal (35 oC), o que pode permitir o uso desse tipo de produção de energia nas regiões que apresentam temperaturas ligeiramente mais baixas.
publishDate 2020
dc.date.submitted.none.fl_str_mv 2020-02-21
dc.date.accessioned.fl_str_mv 2020-09-18T00:56:21Z
dc.date.available.fl_str_mv 2020-09-18T00:56:21Z
dc.date.issued.fl_str_mv 2020-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MARDER, Munique. Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás. 2020. Dissertação (Mestrado) – Curso de Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, 21 fev. 2020. Disponível em: http://hdl.handle.net/10737/2814.
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10737/2814
identifier_str_mv MARDER, Munique. Identificação e caracterização de microrganismos visando maior eficiência na produção de biogás. 2020. Dissertação (Mestrado) – Curso de Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, 21 fev. 2020. Disponível em: http://hdl.handle.net/10737/2814.
url http://hdl.handle.net/10737/2814
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
eu_rights_str_mv embargoedAccess
dc.publisher.program.fl_str_mv PPGBiotec;Biotecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)
instname:Centro Universitário Univates (UNIVATES)
instacron:UNIVATES
instname_str Centro Universitário Univates (UNIVATES)
instacron_str UNIVATES
institution UNIVATES
reponame_str Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)
collection Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD)
bitstream.url.fl_str_mv https://www.univates.br/bdu/bitstreams/ba838d3b-3eaf-4d31-9b37-968f56a625bf/download
https://www.univates.br/bdu/bitstreams/0ca70461-53ba-4bfe-a503-b2f5f4787ac0/download
https://www.univates.br/bdu/bitstreams/fa145d7d-13f1-43eb-8147-5adf4479d4e9/download
https://www.univates.br/bdu/bitstreams/3c79a5ac-72fa-4eae-ad30-559d4200bdca/download
https://www.univates.br/bdu/bitstreams/b6995cd3-b6f3-4419-a1f3-ac14d7c95644/download
https://www.univates.br/bdu/bitstreams/c687acf6-a88b-4a88-9acd-0ecba00bded1/download
https://www.univates.br/bdu/bitstreams/f2ec218d-c43c-46c9-ab7e-1c64fc816d36/download
bitstream.checksum.fl_str_mv 26fddcec42ebb780f85c15666089ddde
587cd8ffae15c8598ed3c46d248a3f38
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
9ff8881dd5e9ac6239355604ad97a135
6ad7f3a5f6a5977a25f6fe2bdc5bf87b
7969fde5b15c129cd8564f5cd9134623
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIVATES (Biblioteca Digital da Univates - BD) - Centro Universitário Univates (UNIVATES)
repository.mail.fl_str_mv
_version_ 1813262398355668992