Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Veras |
DOI: | 10.34117/bjdv6n12-549 |
Texto Completo: | https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011 |
Resumo: | Online social networks are important social spaces for human interaction, with far-reaching applications in communication, entertainment, advertising, social campaigning and community empowerment. Shared data have become a research source for several studies seeking to analyze user interactions in these networks. Because of the large volume of data produced, text mining techniques are required for analyzing the collected data efficiently. One of the challenges of the text mining process is the lack of direct access to data from online social networks, which requires the use of specialized tools for collecting data. The present study conducts a performance analysis of Oráculo Application Development Framework as a tool for collecting and mining texts shared on the social network Twitter. In this framework, different algorithms and techniques were applied to circumvent the limitations imposed by the Twitter API. Performance tests were conducted comparing the Oráculo and DMI-TCAT algorithms. The results show that Oráculo presents superior performance in the number of tweets collected compared to DMI-TCAT considering the algorithms and scenarios analyzed. |
id |
VERACRUZ-0_c4f1a95af54ddd0bb2332a825ab8cfd3 |
---|---|
oai_identifier_str |
oai:ojs2.ojs.brazilianjournals.com.br:article/22011 |
network_acronym_str |
VERACRUZ-0 |
network_name_str |
Revista Veras |
spelling |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitterperformance analysistext collectorframeworkTwitter.Online social networks are important social spaces for human interaction, with far-reaching applications in communication, entertainment, advertising, social campaigning and community empowerment. Shared data have become a research source for several studies seeking to analyze user interactions in these networks. Because of the large volume of data produced, text mining techniques are required for analyzing the collected data efficiently. One of the challenges of the text mining process is the lack of direct access to data from online social networks, which requires the use of specialized tools for collecting data. The present study conducts a performance analysis of Oráculo Application Development Framework as a tool for collecting and mining texts shared on the social network Twitter. In this framework, different algorithms and techniques were applied to circumvent the limitations imposed by the Twitter API. Performance tests were conducted comparing the Oráculo and DMI-TCAT algorithms. The results show that Oráculo presents superior performance in the number of tweets collected compared to DMI-TCAT considering the algorithms and scenarios analyzed.Brazilian Journals Publicações de Periódicos e Editora Ltda.2020-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/2201110.34117/bjdv6n12-549Brazilian Journal of Development; Vol. 6 No. 12 (2020); 100969-100986Brazilian Journal of Development; Vol. 6 Núm. 12 (2020); 100969-100986Brazilian Journal of Development; v. 6 n. 12 (2020); 100969-1009862525-8761reponame:Revista Verasinstname:Instituto Superior de Educação Vera Cruz (VeraCruz)instacron:VERACRUZenghttps://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011/17572Copyright (c) 2020 Brazilian Journal of Developmentinfo:eu-repo/semantics/openAccessde Oliveira, Hércules BatistaGuelpeli, Marcus Vinicius Carvalho2021-06-07T20:46:13Zoai:ojs2.ojs.brazilianjournals.com.br:article/22011Revistahttp://site.veracruz.edu.br:8087/instituto/revistaveras/index.php/revistaveras/PRIhttp://site.veracruz.edu.br:8087/instituto/revistaveras/index.php/revistaveras/oai||revistaveras@veracruz.edu.br2236-57292236-5729opendoar:2024-10-15T16:12:11.097857Revista Veras - Instituto Superior de Educação Vera Cruz (VeraCruz)false |
dc.title.none.fl_str_mv |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter |
title |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter |
spellingShingle |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter de Oliveira, Hércules Batista performance analysis text collector framework Twitter. de Oliveira, Hércules Batista performance analysis text collector framework Twitter. |
title_short |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter |
title_full |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter |
title_fullStr |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter |
title_full_unstemmed |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter |
title_sort |
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter |
author |
de Oliveira, Hércules Batista |
author_facet |
de Oliveira, Hércules Batista de Oliveira, Hércules Batista Guelpeli, Marcus Vinicius Carvalho Guelpeli, Marcus Vinicius Carvalho |
author_role |
author |
author2 |
Guelpeli, Marcus Vinicius Carvalho |
author2_role |
author |
dc.contributor.author.fl_str_mv |
de Oliveira, Hércules Batista Guelpeli, Marcus Vinicius Carvalho |
dc.subject.por.fl_str_mv |
performance analysis text collector framework Twitter. |
topic |
performance analysis text collector framework Twitter. |
description |
Online social networks are important social spaces for human interaction, with far-reaching applications in communication, entertainment, advertising, social campaigning and community empowerment. Shared data have become a research source for several studies seeking to analyze user interactions in these networks. Because of the large volume of data produced, text mining techniques are required for analyzing the collected data efficiently. One of the challenges of the text mining process is the lack of direct access to data from online social networks, which requires the use of specialized tools for collecting data. The present study conducts a performance analysis of Oráculo Application Development Framework as a tool for collecting and mining texts shared on the social network Twitter. In this framework, different algorithms and techniques were applied to circumvent the limitations imposed by the Twitter API. Performance tests were conducted comparing the Oráculo and DMI-TCAT algorithms. The results show that Oráculo presents superior performance in the number of tweets collected compared to DMI-TCAT considering the algorithms and scenarios analyzed. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011 10.34117/bjdv6n12-549 |
url |
https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011 |
identifier_str_mv |
10.34117/bjdv6n12-549 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011/17572 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Brazilian Journal of Development info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Brazilian Journal of Development |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
dc.source.none.fl_str_mv |
Brazilian Journal of Development; Vol. 6 No. 12 (2020); 100969-100986 Brazilian Journal of Development; Vol. 6 Núm. 12 (2020); 100969-100986 Brazilian Journal of Development; v. 6 n. 12 (2020); 100969-100986 2525-8761 reponame:Revista Veras instname:Instituto Superior de Educação Vera Cruz (VeraCruz) instacron:VERACRUZ |
instname_str |
Instituto Superior de Educação Vera Cruz (VeraCruz) |
instacron_str |
VERACRUZ |
institution |
VERACRUZ |
reponame_str |
Revista Veras |
collection |
Revista Veras |
repository.name.fl_str_mv |
Revista Veras - Instituto Superior de Educação Vera Cruz (VeraCruz) |
repository.mail.fl_str_mv |
||revistaveras@veracruz.edu.br |
_version_ |
1822183770720043008 |
dc.identifier.doi.none.fl_str_mv |
10.34117/bjdv6n12-549 |