Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter

Detalhes bibliográficos
Autor(a) principal: de Oliveira, Hércules Batista
Data de Publicação: 2020
Outros Autores: Guelpeli, Marcus Vinicius Carvalho
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Veras
DOI: 10.34117/bjdv6n12-549
Texto Completo: https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011
Resumo: Online social networks are important social spaces for human interaction, with far-reaching applications in communication, entertainment, advertising, social campaigning and community empowerment. Shared data have become a research source for several studies seeking to analyze user interactions in these networks. Because of the large volume of data produced, text mining techniques are required for analyzing the collected data efficiently. One of the challenges of the text mining process is the lack of direct access to data from online social networks, which requires the use of specialized tools for collecting data. The present study conducts a performance analysis of Oráculo Application Development Framework as a tool for collecting and mining texts shared on the social network Twitter. In this framework, different algorithms and techniques were applied to circumvent the limitations imposed by the Twitter API. Performance tests were conducted comparing the Oráculo and DMI-TCAT algorithms. The results show that Oráculo presents superior performance in the number of tweets collected compared to DMI-TCAT considering the algorithms and scenarios analyzed.
id VERACRUZ-0_c4f1a95af54ddd0bb2332a825ab8cfd3
oai_identifier_str oai:ojs2.ojs.brazilianjournals.com.br:article/22011
network_acronym_str VERACRUZ-0
network_name_str Revista Veras
spelling Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitterperformance analysistext collectorframeworkTwitter.Online social networks are important social spaces for human interaction, with far-reaching applications in communication, entertainment, advertising, social campaigning and community empowerment. Shared data have become a research source for several studies seeking to analyze user interactions in these networks. Because of the large volume of data produced, text mining techniques are required for analyzing the collected data efficiently. One of the challenges of the text mining process is the lack of direct access to data from online social networks, which requires the use of specialized tools for collecting data. The present study conducts a performance analysis of Oráculo Application Development Framework as a tool for collecting and mining texts shared on the social network Twitter. In this framework, different algorithms and techniques were applied to circumvent the limitations imposed by the Twitter API. Performance tests were conducted comparing the Oráculo and DMI-TCAT algorithms. The results show that Oráculo presents superior performance in the number of tweets collected compared to DMI-TCAT considering the algorithms and scenarios analyzed.Brazilian Journals Publicações de Periódicos e Editora Ltda.2020-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/2201110.34117/bjdv6n12-549Brazilian Journal of Development; Vol. 6 No. 12 (2020); 100969-100986Brazilian Journal of Development; Vol. 6 Núm. 12 (2020); 100969-100986Brazilian Journal of Development; v. 6 n. 12 (2020); 100969-1009862525-8761reponame:Revista Verasinstname:Instituto Superior de Educação Vera Cruz (VeraCruz)instacron:VERACRUZenghttps://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011/17572Copyright (c) 2020 Brazilian Journal of Developmentinfo:eu-repo/semantics/openAccessde Oliveira, Hércules BatistaGuelpeli, Marcus Vinicius Carvalho2021-06-07T20:46:13Zoai:ojs2.ojs.brazilianjournals.com.br:article/22011Revistahttp://site.veracruz.edu.br:8087/instituto/revistaveras/index.php/revistaveras/PRIhttp://site.veracruz.edu.br:8087/instituto/revistaveras/index.php/revistaveras/oai||revistaveras@veracruz.edu.br2236-57292236-5729opendoar:2024-10-15T16:12:11.097857Revista Veras - Instituto Superior de Educação Vera Cruz (VeraCruz)false
dc.title.none.fl_str_mv Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
title Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
spellingShingle Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
de Oliveira, Hércules Batista
performance analysis
text collector
framework
Twitter.
de Oliveira, Hércules Batista
performance analysis
text collector
framework
Twitter.
title_short Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
title_full Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
title_fullStr Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
title_full_unstemmed Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
title_sort Performance analysis of the Oráculo framework for data collection from Twitter / Análise do desempenho do Framework Oráculo para coletas no Twitter
author de Oliveira, Hércules Batista
author_facet de Oliveira, Hércules Batista
de Oliveira, Hércules Batista
Guelpeli, Marcus Vinicius Carvalho
Guelpeli, Marcus Vinicius Carvalho
author_role author
author2 Guelpeli, Marcus Vinicius Carvalho
author2_role author
dc.contributor.author.fl_str_mv de Oliveira, Hércules Batista
Guelpeli, Marcus Vinicius Carvalho
dc.subject.por.fl_str_mv performance analysis
text collector
framework
Twitter.
topic performance analysis
text collector
framework
Twitter.
description Online social networks are important social spaces for human interaction, with far-reaching applications in communication, entertainment, advertising, social campaigning and community empowerment. Shared data have become a research source for several studies seeking to analyze user interactions in these networks. Because of the large volume of data produced, text mining techniques are required for analyzing the collected data efficiently. One of the challenges of the text mining process is the lack of direct access to data from online social networks, which requires the use of specialized tools for collecting data. The present study conducts a performance analysis of Oráculo Application Development Framework as a tool for collecting and mining texts shared on the social network Twitter. In this framework, different algorithms and techniques were applied to circumvent the limitations imposed by the Twitter API. Performance tests were conducted comparing the Oráculo and DMI-TCAT algorithms. The results show that Oráculo presents superior performance in the number of tweets collected compared to DMI-TCAT considering the algorithms and scenarios analyzed.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011
10.34117/bjdv6n12-549
url https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011
identifier_str_mv 10.34117/bjdv6n12-549
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/22011/17572
dc.rights.driver.fl_str_mv Copyright (c) 2020 Brazilian Journal of Development
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Brazilian Journal of Development
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Brazilian Journals Publicações de Periódicos e Editora Ltda.
publisher.none.fl_str_mv Brazilian Journals Publicações de Periódicos e Editora Ltda.
dc.source.none.fl_str_mv Brazilian Journal of Development; Vol. 6 No. 12 (2020); 100969-100986
Brazilian Journal of Development; Vol. 6 Núm. 12 (2020); 100969-100986
Brazilian Journal of Development; v. 6 n. 12 (2020); 100969-100986
2525-8761
reponame:Revista Veras
instname:Instituto Superior de Educação Vera Cruz (VeraCruz)
instacron:VERACRUZ
instname_str Instituto Superior de Educação Vera Cruz (VeraCruz)
instacron_str VERACRUZ
institution VERACRUZ
reponame_str Revista Veras
collection Revista Veras
repository.name.fl_str_mv Revista Veras - Instituto Superior de Educação Vera Cruz (VeraCruz)
repository.mail.fl_str_mv ||revistaveras@veracruz.edu.br
_version_ 1822183770720043008
dc.identifier.doi.none.fl_str_mv 10.34117/bjdv6n12-549