Reconhecimento facial com técnicas de machine learning

Detalhes bibliográficos
Autor(a) principal: Rozar, Jéssyca Luiz
Data de Publicação: 2020
Outros Autores: Francisco, Antonio Marcos
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Universitário da Ânima (RUNA)
Texto Completo: https://repositorio.animaeducacao.com.br/handle/ANIMA/11061
Resumo: For human beings to recognize people's faces by certain facial features is a natural skill. However, implementing facial recognition capabilities on machines is not an easy task. The machine language, known as machine learning, for facial recognition involves many mathematical calculations and requires great processing power. With the evolution of algorithms and the increase in the processing capacity of computers, the development of machines equipped with facial recognition technology is already possible. This technology is currently being used in several sectors, such as security, health, government sectors and others. Thus, the present work aims to carry out a broader study on the functioning of machine learning. It will also be discussed the functioning of artificial neural networks, a technique developed to simulate the functioning of the human neural network itself. Finally, a comparison of facial recognition algorithms provided by the openCV library will be presented. In order to evaluate the performance between the Eigenface, Fisherface and LBPH algorithms, it was necessary to develop a Python application with the ability to identify faces using global representations of the facial image.
id Ânima_c7680b0166c358bb3c678e33feacbf5f
oai_identifier_str oai:repositorio.animaeducacao.com.br:ANIMA/11061
network_acronym_str Ânima
network_name_str Repositório Universitário da Ânima (RUNA)
repository_id_str
spelling Reconhecimento facial com técnicas de machine learningFacial recognition with machine learning techniquesInteligência artificialAprendizado de máquinaRedes neuraisOpenCVFor human beings to recognize people's faces by certain facial features is a natural skill. However, implementing facial recognition capabilities on machines is not an easy task. The machine language, known as machine learning, for facial recognition involves many mathematical calculations and requires great processing power. With the evolution of algorithms and the increase in the processing capacity of computers, the development of machines equipped with facial recognition technology is already possible. This technology is currently being used in several sectors, such as security, health, government sectors and others. Thus, the present work aims to carry out a broader study on the functioning of machine learning. It will also be discussed the functioning of artificial neural networks, a technique developed to simulate the functioning of the human neural network itself. Finally, a comparison of facial recognition algorithms provided by the openCV library will be presented. In order to evaluate the performance between the Eigenface, Fisherface and LBPH algorithms, it was necessary to develop a Python application with the ability to identify faces using global representations of the facial image.Para o ser humano reconhecer o rosto de pessoas por determinadas características faciais é uma habilidade natural. Porém, implementar a capacidade de reconhecimento facial em máquinas não é uma tarefa fácil. A linguagem de máquinas, conhecida como machine learning, para reconhecimento facial envolve muitos cálculos matemáticos e exige grande poder de processamento. Com a evolução dos algoritmos e o aumento da capacidade de processamento dos computadores o desenvolvimento de máquinas dotados de tecnologia de reconhecimento facial já é possível. Atualmente esta tecnologia está sendo utilizada em diversos setores, como segurança, saúde, setores governamentais entre outros. Assim, o presente trabalha visa realizar um estudo mais amplo sobre o funcionamento de machine learning. Será abordado também o funcionamento das redes neurais artificiais, técnica desenvolvida para simular o funcionamento da própria rede neural humana. Por fim, será apresentado um comparativo de algoritmos de reconhecimento facial disponibilizados pela biblioteca openCV. Para fins de avaliação do desempenho entre os algoritmos Eigenface, Fisherface e LBPH foi necessário o desenvolvimento de uma aplicação em Python com a capacidade de identificar faces utilizando representações globais da imagem facial.Morales, Aran Bey TcholakianRozar, Jéssyca LuizFrancisco, Antonio Marcos2020-07-31T12:53:03Z2020-11-29T05:57:54Z2020-07-31T12:53:03Z2020-11-29T05:57:54Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis46 fapplication/pdfapplication/pdfhttps://repositorio.animaeducacao.com.br/handle/ANIMA/11061Sistemas de Informação - Pedra BrancaPalhoçaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessporreponame:Repositório Universitário da Ânima (RUNA)instname:Ânima Educaçãoinstacron:Ânima2020-12-02T07:46:45Zoai:repositorio.animaeducacao.com.br:ANIMA/11061Repositório InstitucionalPRIhttps://repositorio.animaeducacao.com.br/oai/requestcontato@animaeducacao.com.bropendoar:2020-12-02T07:46:45Repositório Universitário da Ânima (RUNA) - Ânima Educaçãofalse
dc.title.none.fl_str_mv Reconhecimento facial com técnicas de machine learning
Facial recognition with machine learning techniques
title Reconhecimento facial com técnicas de machine learning
spellingShingle Reconhecimento facial com técnicas de machine learning
Rozar, Jéssyca Luiz
Inteligência artificial
Aprendizado de máquina
Redes neurais
OpenCV
title_short Reconhecimento facial com técnicas de machine learning
title_full Reconhecimento facial com técnicas de machine learning
title_fullStr Reconhecimento facial com técnicas de machine learning
title_full_unstemmed Reconhecimento facial com técnicas de machine learning
title_sort Reconhecimento facial com técnicas de machine learning
author Rozar, Jéssyca Luiz
author_facet Rozar, Jéssyca Luiz
Francisco, Antonio Marcos
author_role author
author2 Francisco, Antonio Marcos
author2_role author
dc.contributor.none.fl_str_mv Morales, Aran Bey Tcholakian
dc.contributor.author.fl_str_mv Rozar, Jéssyca Luiz
Francisco, Antonio Marcos
dc.subject.por.fl_str_mv Inteligência artificial
Aprendizado de máquina
Redes neurais
OpenCV
topic Inteligência artificial
Aprendizado de máquina
Redes neurais
OpenCV
description For human beings to recognize people's faces by certain facial features is a natural skill. However, implementing facial recognition capabilities on machines is not an easy task. The machine language, known as machine learning, for facial recognition involves many mathematical calculations and requires great processing power. With the evolution of algorithms and the increase in the processing capacity of computers, the development of machines equipped with facial recognition technology is already possible. This technology is currently being used in several sectors, such as security, health, government sectors and others. Thus, the present work aims to carry out a broader study on the functioning of machine learning. It will also be discussed the functioning of artificial neural networks, a technique developed to simulate the functioning of the human neural network itself. Finally, a comparison of facial recognition algorithms provided by the openCV library will be presented. In order to evaluate the performance between the Eigenface, Fisherface and LBPH algorithms, it was necessary to develop a Python application with the ability to identify faces using global representations of the facial image.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-31T12:53:03Z
2020-11-29T05:57:54Z
2020-07-31T12:53:03Z
2020-11-29T05:57:54Z
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.animaeducacao.com.br/handle/ANIMA/11061
url https://repositorio.animaeducacao.com.br/handle/ANIMA/11061
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Sistemas de Informação - Pedra Branca
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 46 f
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Palhoça
dc.source.none.fl_str_mv reponame:Repositório Universitário da Ânima (RUNA)
instname:Ânima Educação
instacron:Ânima
instname_str Ânima Educação
instacron_str Ânima
institution Ânima
reponame_str Repositório Universitário da Ânima (RUNA)
collection Repositório Universitário da Ânima (RUNA)
repository.name.fl_str_mv Repositório Universitário da Ânima (RUNA) - Ânima Educação
repository.mail.fl_str_mv contato@animaeducacao.com.br
_version_ 1767415820516851712