Reconhecimento facial com técnicas de machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Universitário da Ânima (RUNA) |
Texto Completo: | https://repositorio.animaeducacao.com.br/handle/ANIMA/11061 |
Resumo: | For human beings to recognize people's faces by certain facial features is a natural skill. However, implementing facial recognition capabilities on machines is not an easy task. The machine language, known as machine learning, for facial recognition involves many mathematical calculations and requires great processing power. With the evolution of algorithms and the increase in the processing capacity of computers, the development of machines equipped with facial recognition technology is already possible. This technology is currently being used in several sectors, such as security, health, government sectors and others. Thus, the present work aims to carry out a broader study on the functioning of machine learning. It will also be discussed the functioning of artificial neural networks, a technique developed to simulate the functioning of the human neural network itself. Finally, a comparison of facial recognition algorithms provided by the openCV library will be presented. In order to evaluate the performance between the Eigenface, Fisherface and LBPH algorithms, it was necessary to develop a Python application with the ability to identify faces using global representations of the facial image. |
id |
Ânima_c7680b0166c358bb3c678e33feacbf5f |
---|---|
oai_identifier_str |
oai:repositorio.animaeducacao.com.br:ANIMA/11061 |
network_acronym_str |
Ânima |
network_name_str |
Repositório Universitário da Ânima (RUNA) |
repository_id_str |
|
spelling |
Reconhecimento facial com técnicas de machine learningFacial recognition with machine learning techniquesInteligência artificialAprendizado de máquinaRedes neuraisOpenCVFor human beings to recognize people's faces by certain facial features is a natural skill. However, implementing facial recognition capabilities on machines is not an easy task. The machine language, known as machine learning, for facial recognition involves many mathematical calculations and requires great processing power. With the evolution of algorithms and the increase in the processing capacity of computers, the development of machines equipped with facial recognition technology is already possible. This technology is currently being used in several sectors, such as security, health, government sectors and others. Thus, the present work aims to carry out a broader study on the functioning of machine learning. It will also be discussed the functioning of artificial neural networks, a technique developed to simulate the functioning of the human neural network itself. Finally, a comparison of facial recognition algorithms provided by the openCV library will be presented. In order to evaluate the performance between the Eigenface, Fisherface and LBPH algorithms, it was necessary to develop a Python application with the ability to identify faces using global representations of the facial image.Para o ser humano reconhecer o rosto de pessoas por determinadas características faciais é uma habilidade natural. Porém, implementar a capacidade de reconhecimento facial em máquinas não é uma tarefa fácil. A linguagem de máquinas, conhecida como machine learning, para reconhecimento facial envolve muitos cálculos matemáticos e exige grande poder de processamento. Com a evolução dos algoritmos e o aumento da capacidade de processamento dos computadores o desenvolvimento de máquinas dotados de tecnologia de reconhecimento facial já é possível. Atualmente esta tecnologia está sendo utilizada em diversos setores, como segurança, saúde, setores governamentais entre outros. Assim, o presente trabalha visa realizar um estudo mais amplo sobre o funcionamento de machine learning. Será abordado também o funcionamento das redes neurais artificiais, técnica desenvolvida para simular o funcionamento da própria rede neural humana. Por fim, será apresentado um comparativo de algoritmos de reconhecimento facial disponibilizados pela biblioteca openCV. Para fins de avaliação do desempenho entre os algoritmos Eigenface, Fisherface e LBPH foi necessário o desenvolvimento de uma aplicação em Python com a capacidade de identificar faces utilizando representações globais da imagem facial.Morales, Aran Bey TcholakianRozar, Jéssyca LuizFrancisco, Antonio Marcos2020-07-31T12:53:03Z2020-11-29T05:57:54Z2020-07-31T12:53:03Z2020-11-29T05:57:54Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis46 fapplication/pdfapplication/pdfhttps://repositorio.animaeducacao.com.br/handle/ANIMA/11061Sistemas de Informação - Pedra BrancaPalhoçaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessporreponame:Repositório Universitário da Ânima (RUNA)instname:Ânima Educaçãoinstacron:Ânima2020-12-02T07:46:45Zoai:repositorio.animaeducacao.com.br:ANIMA/11061Repositório InstitucionalPRIhttps://repositorio.animaeducacao.com.br/oai/requestcontato@animaeducacao.com.bropendoar:2020-12-02T07:46:45Repositório Universitário da Ânima (RUNA) - Ânima Educaçãofalse |
dc.title.none.fl_str_mv |
Reconhecimento facial com técnicas de machine learning Facial recognition with machine learning techniques |
title |
Reconhecimento facial com técnicas de machine learning |
spellingShingle |
Reconhecimento facial com técnicas de machine learning Rozar, Jéssyca Luiz Inteligência artificial Aprendizado de máquina Redes neurais OpenCV |
title_short |
Reconhecimento facial com técnicas de machine learning |
title_full |
Reconhecimento facial com técnicas de machine learning |
title_fullStr |
Reconhecimento facial com técnicas de machine learning |
title_full_unstemmed |
Reconhecimento facial com técnicas de machine learning |
title_sort |
Reconhecimento facial com técnicas de machine learning |
author |
Rozar, Jéssyca Luiz |
author_facet |
Rozar, Jéssyca Luiz Francisco, Antonio Marcos |
author_role |
author |
author2 |
Francisco, Antonio Marcos |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Morales, Aran Bey Tcholakian |
dc.contributor.author.fl_str_mv |
Rozar, Jéssyca Luiz Francisco, Antonio Marcos |
dc.subject.por.fl_str_mv |
Inteligência artificial Aprendizado de máquina Redes neurais OpenCV |
topic |
Inteligência artificial Aprendizado de máquina Redes neurais OpenCV |
description |
For human beings to recognize people's faces by certain facial features is a natural skill. However, implementing facial recognition capabilities on machines is not an easy task. The machine language, known as machine learning, for facial recognition involves many mathematical calculations and requires great processing power. With the evolution of algorithms and the increase in the processing capacity of computers, the development of machines equipped with facial recognition technology is already possible. This technology is currently being used in several sectors, such as security, health, government sectors and others. Thus, the present work aims to carry out a broader study on the functioning of machine learning. It will also be discussed the functioning of artificial neural networks, a technique developed to simulate the functioning of the human neural network itself. Finally, a comparison of facial recognition algorithms provided by the openCV library will be presented. In order to evaluate the performance between the Eigenface, Fisherface and LBPH algorithms, it was necessary to develop a Python application with the ability to identify faces using global representations of the facial image. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-31T12:53:03Z 2020-11-29T05:57:54Z 2020-07-31T12:53:03Z 2020-11-29T05:57:54Z 2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.animaeducacao.com.br/handle/ANIMA/11061 |
url |
https://repositorio.animaeducacao.com.br/handle/ANIMA/11061 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Sistemas de Informação - Pedra Branca |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
46 f application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Palhoça |
dc.source.none.fl_str_mv |
reponame:Repositório Universitário da Ânima (RUNA) instname:Ânima Educação instacron:Ânima |
instname_str |
Ânima Educação |
instacron_str |
Ânima |
institution |
Ânima |
reponame_str |
Repositório Universitário da Ânima (RUNA) |
collection |
Repositório Universitário da Ânima (RUNA) |
repository.name.fl_str_mv |
Repositório Universitário da Ânima (RUNA) - Ânima Educação |
repository.mail.fl_str_mv |
contato@animaeducacao.com.br |
_version_ |
1767415820516851712 |