Machine learning algorithms to solve statistical problems

Detalhes bibliográficos
Autor(a) principal: Souza, Fábio Hemerson Araújo de
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/56651
Resumo: The field of artificial intelligence before its popularity, begin to be spread around the world as a computational tools from a distant future. In 1950, Artificial Neural Network (ANN) begin to be developed and all compute intelligence algorithms follow the same way , making that future be more closer now a days. Currently, machine learning, an AI branch, is used in many different fields and processes such as marketing and sales, business intelligence, research and development, supply chain, financial stocks, human resources, healthcare, etc. The maturation of AI field carries itself a probabilistic bases that can be used to solve some problems in statistics. In this work we make use of machine learning techniques and algorithms to solve two proposed statistical problems. In chapter 1, the issue is to find an approximation to normal cumulative distribution function. This expression needs to be mathematically and computationally simpler than other approximations founded in statistics lectures and papers and one possible use of this expression is in introductory statistics classrooms. Chapter 2 we address an identifiability distribution problem using machine learning algorithm and a framework for mathematical computation called Tensorflow and an abstraction library for deep learning routines called Keras, both of them written in Python. The main goal here is construct a structure that can be able to capture features from a sample provided by the user and classify the parent distribution of this sample. The results were promising with a accuracy greater then 95% for each distribution used for examples.
id UFC-7_0e9475abea92f5896480809b472c7c05
oai_identifier_str oai:repositorio.ufc.br:riufc/56651
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Machine learning algorithms to solve statistical problemsInteligência artificialAprendizado de máquinaAlgoritmosPIPERedes neuraisArtificial inteligenceMachine learningAlgorithmsNeural NetworkThe field of artificial intelligence before its popularity, begin to be spread around the world as a computational tools from a distant future. In 1950, Artificial Neural Network (ANN) begin to be developed and all compute intelligence algorithms follow the same way , making that future be more closer now a days. Currently, machine learning, an AI branch, is used in many different fields and processes such as marketing and sales, business intelligence, research and development, supply chain, financial stocks, human resources, healthcare, etc. The maturation of AI field carries itself a probabilistic bases that can be used to solve some problems in statistics. In this work we make use of machine learning techniques and algorithms to solve two proposed statistical problems. In chapter 1, the issue is to find an approximation to normal cumulative distribution function. This expression needs to be mathematically and computationally simpler than other approximations founded in statistics lectures and papers and one possible use of this expression is in introductory statistics classrooms. Chapter 2 we address an identifiability distribution problem using machine learning algorithm and a framework for mathematical computation called Tensorflow and an abstraction library for deep learning routines called Keras, both of them written in Python. The main goal here is construct a structure that can be able to capture features from a sample provided by the user and classify the parent distribution of this sample. The results were promising with a accuracy greater then 95% for each distribution used for examples.Antes de sua popularidade o campo da inteligência artificial começou a se espalhar pelo mundo como uma ferramenta computacional de um futuro distante. Em 1950, as Redes Neurais Artificiais (RNA) começaram a ser desenvolvidas e todos os algoritmos de inteligência computacional seguiram o mesmo caminho, fazendo com que esse futuro ficasse cada vez mais próximo. Atualmente, o aprendizado de máquina, um ramo da IA, é usado em muitos campos e processos diferentes, como marketing e vendas, inteligência de negócios, pesquisa e desenvolvimento, cadeia de suprimentos, estoques financeiros, recursos humanos, saúde, etc. O amadurecimento da área de IA trás consigo uma base probabilística que pode ser usada para resolver alguns problemas em estatística. Neste trabalho fazemos uso de técnicas e algoritmos de aprendizado de máquina para resolver dois problemas estatísticos propostos. No capítulo 1, o problema é encontrar uma aproximação para a função de distribuição acumulada para distribuição Normal. Esta expressão precisa ser matemática e computacionalmente mais simples do que outras aproximações encontradas em palestras e artigos de estatística e um possível uso dessa expressão é em sala de aula em disciplinas de introdução à estatística. No capítulo 2 abordamos um problema de distribuição de identificabilidade usando algoritmo de aprendizado de máquina e uma estrutura para computação matemática chamada textit Tensorflow e uma biblioteca de abstração para rotinas de aprendizagem profunda chamada textit Keras, ambas escritas em Python. O objetivo principal aqui é construir uma estrutura que possa ser capaz de capturar características de uma amostra fornecida pelo usuário e classificar a distribuição original dessa amostra. Os resultados foram promissores com uma precisão superior a 95 % para cada distribuição usada nos exemplos.Pinho, Luis Gustavo BastosFreitas, Silvia Maria deSouza, Fábio Hemerson Araújo de2021-02-22T10:37:17Z2021-02-22T10:37:17Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSOUZA, Fábio Hemerson Araújo de. Machine learning algorithms to solve statistical problems. 2020. 45 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/56651engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2021-02-22T10:37:17Zoai:repositorio.ufc.br:riufc/56651Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:47:22.453343Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Machine learning algorithms to solve statistical problems
title Machine learning algorithms to solve statistical problems
spellingShingle Machine learning algorithms to solve statistical problems
Souza, Fábio Hemerson Araújo de
Inteligência artificial
Aprendizado de máquina
Algoritmos
PIPE
Redes neurais
Artificial inteligence
Machine learning
Algorithms
Neural Network
title_short Machine learning algorithms to solve statistical problems
title_full Machine learning algorithms to solve statistical problems
title_fullStr Machine learning algorithms to solve statistical problems
title_full_unstemmed Machine learning algorithms to solve statistical problems
title_sort Machine learning algorithms to solve statistical problems
author Souza, Fábio Hemerson Araújo de
author_facet Souza, Fábio Hemerson Araújo de
author_role author
dc.contributor.none.fl_str_mv Pinho, Luis Gustavo Bastos
Freitas, Silvia Maria de
dc.contributor.author.fl_str_mv Souza, Fábio Hemerson Araújo de
dc.subject.por.fl_str_mv Inteligência artificial
Aprendizado de máquina
Algoritmos
PIPE
Redes neurais
Artificial inteligence
Machine learning
Algorithms
Neural Network
topic Inteligência artificial
Aprendizado de máquina
Algoritmos
PIPE
Redes neurais
Artificial inteligence
Machine learning
Algorithms
Neural Network
description The field of artificial intelligence before its popularity, begin to be spread around the world as a computational tools from a distant future. In 1950, Artificial Neural Network (ANN) begin to be developed and all compute intelligence algorithms follow the same way , making that future be more closer now a days. Currently, machine learning, an AI branch, is used in many different fields and processes such as marketing and sales, business intelligence, research and development, supply chain, financial stocks, human resources, healthcare, etc. The maturation of AI field carries itself a probabilistic bases that can be used to solve some problems in statistics. In this work we make use of machine learning techniques and algorithms to solve two proposed statistical problems. In chapter 1, the issue is to find an approximation to normal cumulative distribution function. This expression needs to be mathematically and computationally simpler than other approximations founded in statistics lectures and papers and one possible use of this expression is in introductory statistics classrooms. Chapter 2 we address an identifiability distribution problem using machine learning algorithm and a framework for mathematical computation called Tensorflow and an abstraction library for deep learning routines called Keras, both of them written in Python. The main goal here is construct a structure that can be able to capture features from a sample provided by the user and classify the parent distribution of this sample. The results were promising with a accuracy greater then 95% for each distribution used for examples.
publishDate 2020
dc.date.none.fl_str_mv 2020
2021-02-22T10:37:17Z
2021-02-22T10:37:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUZA, Fábio Hemerson Araújo de. Machine learning algorithms to solve statistical problems. 2020. 45 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.
http://www.repositorio.ufc.br/handle/riufc/56651
identifier_str_mv SOUZA, Fábio Hemerson Araújo de. Machine learning algorithms to solve statistical problems. 2020. 45 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.
url http://www.repositorio.ufc.br/handle/riufc/56651
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028947353403392