Leaf area estimation of cassava from linear dimensions

Detalhes bibliográficos
Autor(a) principal: ZANETTI,SAMARA
Data de Publicação: 2017
Outros Autores: PEREIRA,LAÍS F.M., SARTORI,MARIA MÁRCIA P., SILVA,MARCELO A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000401729
Resumo: ABSTRACT The objective of this study was to determine predictor models of leaf area of ​​cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of ​​cassava cultivar IAC 576-70.
id ABC-1_1abc41ce4dd7740baffbcb2572b992f7
oai_identifier_str oai:scielo:S0001-37652017000401729
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Leaf area estimation of cassava from linear dimensionsManihot esculenta Crantzleaf biometricsstatistical modelsmultiple regressionABSTRACT The objective of this study was to determine predictor models of leaf area of ​​cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of ​​cassava cultivar IAC 576-70.Academia Brasileira de Ciências2017-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000401729Anais da Academia Brasileira de Ciências v.89 n.3 2017reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-376520172016-0475info:eu-repo/semantics/openAccessZANETTI,SAMARAPEREIRA,LAÍS F.M.SARTORI,MARIA MÁRCIA P.SILVA,MARCELO A.eng2019-11-29T00:00:00Zoai:scielo:S0001-37652017000401729Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2019-11-29T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Leaf area estimation of cassava from linear dimensions
title Leaf area estimation of cassava from linear dimensions
spellingShingle Leaf area estimation of cassava from linear dimensions
ZANETTI,SAMARA
Manihot esculenta Crantz
leaf biometrics
statistical models
multiple regression
title_short Leaf area estimation of cassava from linear dimensions
title_full Leaf area estimation of cassava from linear dimensions
title_fullStr Leaf area estimation of cassava from linear dimensions
title_full_unstemmed Leaf area estimation of cassava from linear dimensions
title_sort Leaf area estimation of cassava from linear dimensions
author ZANETTI,SAMARA
author_facet ZANETTI,SAMARA
PEREIRA,LAÍS F.M.
SARTORI,MARIA MÁRCIA P.
SILVA,MARCELO A.
author_role author
author2 PEREIRA,LAÍS F.M.
SARTORI,MARIA MÁRCIA P.
SILVA,MARCELO A.
author2_role author
author
author
dc.contributor.author.fl_str_mv ZANETTI,SAMARA
PEREIRA,LAÍS F.M.
SARTORI,MARIA MÁRCIA P.
SILVA,MARCELO A.
dc.subject.por.fl_str_mv Manihot esculenta Crantz
leaf biometrics
statistical models
multiple regression
topic Manihot esculenta Crantz
leaf biometrics
statistical models
multiple regression
description ABSTRACT The objective of this study was to determine predictor models of leaf area of ​​cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of ​​cassava cultivar IAC 576-70.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000401729
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000401729
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-376520172016-0475
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.89 n.3 2017
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302864813981696