Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652005000400002 |
Resumo: | We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators. |
id |
ABC-1_48744a8a4503db3db87e3b9757603e0d |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652005000400002 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spacessymplectic Hilbert spacesLagrangian subspacesLagrangian Grassmannianunbounded self-adjoint operatorsspectral theoremWe prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators.Academia Brasileira de Ciências2005-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652005000400002Anais da Academia Brasileira de Ciências v.77 n.4 2005reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652005000400002info:eu-repo/semantics/openAccessPiccione,PaoloTausk,Daniel V.eng2005-11-29T00:00:00Zoai:scielo:S0001-37652005000400002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2005-11-29T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces |
title |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces |
spellingShingle |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces Piccione,Paolo symplectic Hilbert spaces Lagrangian subspaces Lagrangian Grassmannian unbounded self-adjoint operators spectral theorem |
title_short |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces |
title_full |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces |
title_fullStr |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces |
title_full_unstemmed |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces |
title_sort |
Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces |
author |
Piccione,Paolo |
author_facet |
Piccione,Paolo Tausk,Daniel V. |
author_role |
author |
author2 |
Tausk,Daniel V. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Piccione,Paolo Tausk,Daniel V. |
dc.subject.por.fl_str_mv |
symplectic Hilbert spaces Lagrangian subspaces Lagrangian Grassmannian unbounded self-adjoint operators spectral theorem |
topic |
symplectic Hilbert spaces Lagrangian subspaces Lagrangian Grassmannian unbounded self-adjoint operators spectral theorem |
description |
We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652005000400002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652005000400002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652005000400002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.77 n.4 2005 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302856464171008 |