A duality result between the minimal surface equation and the maximal surface equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200002 |
Resumo: | In this note we show how classical Bernstein's theorem on minimal surfaces in the Euclidean space can be seen as a consequence of Calabi-Bernstein's theorem on maximal surfaces in the Lorentz-Minkowski space (and viceversa). This follows from a simple but nice duality between solutions to their corresponding differential equations. |
id |
ABC-1_760b7f1928e1d710dea82c961f8cfe90 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652001000200002 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
A duality result between the minimal surface equation and the maximal surface equationMinimal surface equationMaximal surface equationBernstein's theoremCalabi-Bernstein's theoremIn this note we show how classical Bernstein's theorem on minimal surfaces in the Euclidean space can be seen as a consequence of Calabi-Bernstein's theorem on maximal surfaces in the Lorentz-Minkowski space (and viceversa). This follows from a simple but nice duality between solutions to their corresponding differential equations.Academia Brasileira de Ciências2001-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200002Anais da Academia Brasileira de Ciências v.73 n.2 2001reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652001000200002info:eu-repo/semantics/openAccessALÍAS,LUIS J.PALMER,BENNETTeng2001-06-08T00:00:00Zoai:scielo:S0001-37652001000200002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-06-08T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
A duality result between the minimal surface equation and the maximal surface equation |
title |
A duality result between the minimal surface equation and the maximal surface equation |
spellingShingle |
A duality result between the minimal surface equation and the maximal surface equation ALÍAS,LUIS J. Minimal surface equation Maximal surface equation Bernstein's theorem Calabi-Bernstein's theorem |
title_short |
A duality result between the minimal surface equation and the maximal surface equation |
title_full |
A duality result between the minimal surface equation and the maximal surface equation |
title_fullStr |
A duality result between the minimal surface equation and the maximal surface equation |
title_full_unstemmed |
A duality result between the minimal surface equation and the maximal surface equation |
title_sort |
A duality result between the minimal surface equation and the maximal surface equation |
author |
ALÍAS,LUIS J. |
author_facet |
ALÍAS,LUIS J. PALMER,BENNETT |
author_role |
author |
author2 |
PALMER,BENNETT |
author2_role |
author |
dc.contributor.author.fl_str_mv |
ALÍAS,LUIS J. PALMER,BENNETT |
dc.subject.por.fl_str_mv |
Minimal surface equation Maximal surface equation Bernstein's theorem Calabi-Bernstein's theorem |
topic |
Minimal surface equation Maximal surface equation Bernstein's theorem Calabi-Bernstein's theorem |
description |
In this note we show how classical Bernstein's theorem on minimal surfaces in the Euclidean space can be seen as a consequence of Calabi-Bernstein's theorem on maximal surfaces in the Lorentz-Minkowski space (and viceversa). This follows from a simple but nice duality between solutions to their corresponding differential equations. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652001000200002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.73 n.2 2001 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302855463829504 |