New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300202 |
Resumo: | Abstract: We present two new classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2. The first class is formed by the polynomials maps of the form (q(x)–p(y), q(y)+p(x)) : R 2 ⟶ R 2 such that p and q are real polynomials satisfying p'(x)q'(x) ≠ 0. The second class is formed by polynomials maps (f, g): R 2 ⟶ R 2 where f and g are real homogeneous polynomials of the same arbitrary degree satisfying some conditions. |
id |
ABC-1_9d67f8654fb1687de3c51769bdb526f8 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652019000300202 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 injective polynomial mapsglobal centerreal Jacobian conjectureplanar Hamiltonian systemsAbstract: We present two new classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2. The first class is formed by the polynomials maps of the form (q(x)–p(y), q(y)+p(x)) : R 2 ⟶ R 2 such that p and q are real polynomials satisfying p'(x)q'(x) ≠ 0. The second class is formed by polynomials maps (f, g): R 2 ⟶ R 2 where f and g are real homogeneous polynomials of the same arbitrary degree satisfying some conditions.Academia Brasileira de Ciências2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300202Anais da Academia Brasileira de Ciências v.91 n.2 2019reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201920170627info:eu-repo/semantics/openAccessITIKAWA,JACKSONLLIBRE,JAUMEeng2019-06-27T00:00:00Zoai:scielo:S0001-37652019000300202Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2019-06-27T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 |
title |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 |
spellingShingle |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 ITIKAWA,JACKSON injective polynomial maps global center real Jacobian conjecture planar Hamiltonian systems |
title_short |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 |
title_full |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 |
title_fullStr |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 |
title_full_unstemmed |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 |
title_sort |
New classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2 |
author |
ITIKAWA,JACKSON |
author_facet |
ITIKAWA,JACKSON LLIBRE,JAUME |
author_role |
author |
author2 |
LLIBRE,JAUME |
author2_role |
author |
dc.contributor.author.fl_str_mv |
ITIKAWA,JACKSON LLIBRE,JAUME |
dc.subject.por.fl_str_mv |
injective polynomial maps global center real Jacobian conjecture planar Hamiltonian systems |
topic |
injective polynomial maps global center real Jacobian conjecture planar Hamiltonian systems |
description |
Abstract: We present two new classes of polynomial maps satisfying the real Jacobian conjecture in ℝ 2. The first class is formed by the polynomials maps of the form (q(x)–p(y), q(y)+p(x)) : R 2 ⟶ R 2 such that p and q are real polynomials satisfying p'(x)q'(x) ≠ 0. The second class is formed by polynomials maps (f, g): R 2 ⟶ R 2 where f and g are real homogeneous polynomials of the same arbitrary degree satisfying some conditions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300202 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652019000300202 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765201920170627 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.91 n.2 2019 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302867300155392 |