On Ribaucour transformations and applications to linear Weingarten surfaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400001 |
Resumo: | We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with flat normal bundle, motivated by the classical definition and by more recent extensions. The new definition provides a precise treatment of the geometric aspect of such transformations preserving lines of curvature and it can be applied to submanifolds whose principal curvatures have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean space. |
id |
ABC-1_a203ab0bf360ec0e2b70643b4dec66e4 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652002000400001 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
On Ribaucour transformations and applications to linear Weingarten surfacesRibaucour transformationslinear Weingarten surfacesminimal surfacesconstant mean curvatureWe present a revised definition of a Ribaucour transformation for submanifolds of space forms, with flat normal bundle, motivated by the classical definition and by more recent extensions. The new definition provides a precise treatment of the geometric aspect of such transformations preserving lines of curvature and it can be applied to submanifolds whose principal curvatures have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean space.Academia Brasileira de Ciências2002-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400001Anais da Academia Brasileira de Ciências v.74 n.4 2002reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652002000400001info:eu-repo/semantics/openAccessTENENBLAT,KETIeng2003-01-24T00:00:00Zoai:scielo:S0001-37652002000400001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2003-01-24T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title |
On Ribaucour transformations and applications to linear Weingarten surfaces |
spellingShingle |
On Ribaucour transformations and applications to linear Weingarten surfaces TENENBLAT,KETI Ribaucour transformations linear Weingarten surfaces minimal surfaces constant mean curvature |
title_short |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_full |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_fullStr |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_full_unstemmed |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_sort |
On Ribaucour transformations and applications to linear Weingarten surfaces |
author |
TENENBLAT,KETI |
author_facet |
TENENBLAT,KETI |
author_role |
author |
dc.contributor.author.fl_str_mv |
TENENBLAT,KETI |
dc.subject.por.fl_str_mv |
Ribaucour transformations linear Weingarten surfaces minimal surfaces constant mean curvature |
topic |
Ribaucour transformations linear Weingarten surfaces minimal surfaces constant mean curvature |
description |
We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with flat normal bundle, motivated by the classical definition and by more recent extensions. The new definition provides a precise treatment of the geometric aspect of such transformations preserving lines of curvature and it can be applied to submanifolds whose principal curvatures have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean space. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000400001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652002000400001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.74 n.4 2002 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302855785742336 |