On Ribaucour transformations and applications to linear Weingarten surfaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | http://repositorio.unb.br/handle/10482/25822 https://dx.doi.org/10.1590/S0001-37652002000400001 |
Resumo: | We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with flat normal bundle, motivated by the classical definition and by more recent extensions. The new definition provides a precise treatment of the geometric aspect of such transformations preserving lines of curvature and it can be applied to submanifolds whose principal curvatures have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean space. |
id |
UNB_dd6ded733c5618fc4eb5eacbc9a9dc93 |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/25822 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
On Ribaucour transformations and applications to linear Weingarten surfacesTransformações de RibaucourSuperfícies de WeingartenSuperfícies mínimasCurvatura média constanteWe present a revised definition of a Ribaucour transformation for submanifolds of space forms, with flat normal bundle, motivated by the classical definition and by more recent extensions. The new definition provides a precise treatment of the geometric aspect of such transformations preserving lines of curvature and it can be applied to submanifolds whose principal curvatures have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean space.Apresentamos uma definição de tranformação de Ribaucour revisada, para subvariedades de formas espaciais com fibrado normal plano, motivados pela definição clássica e pelas extensões mais recentes. A nova definição fornece um tratamento preciso do aspecto geométrico de tais transformações preservarem linhas de curvatura e pode ser aplicada a subvariedades cujas curvaturas principais têm multiplicidade maior que um. Transformações de Ribaucour são aplicadas como um método para obtenção de superfícies de Weingarten lineares, contidas no espaço Euclideano, a partir de uma dada superfície deste tipo. Exemplos são incluidos para superfícies mínimas, superfícies de curvatura média constante e superfícies linear Weingarten. Os exemplos mostram a existência de superfícies linear Weingarten, hiperbólicas, completas no espaço Euclideano.Em processamentoAcademia Brasileira de Ciências2017-12-07T04:35:25Z2017-12-07T04:35:25Z2002info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfAn. Acad. Bras. Ciênc.,v.74,n.4,p.559-575,2002http://repositorio.unb.br/handle/10482/25822https://dx.doi.org/10.1590/S0001-37652002000400001TENENBLAT, KETIinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2024-08-28T16:27:55Zoai:repositorio.unb.br:10482/25822Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2024-08-28T16:27:55Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title |
On Ribaucour transformations and applications to linear Weingarten surfaces |
spellingShingle |
On Ribaucour transformations and applications to linear Weingarten surfaces TENENBLAT, KETI Transformações de Ribaucour Superfícies de Weingarten Superfícies mínimas Curvatura média constante |
title_short |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_full |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_fullStr |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_full_unstemmed |
On Ribaucour transformations and applications to linear Weingarten surfaces |
title_sort |
On Ribaucour transformations and applications to linear Weingarten surfaces |
author |
TENENBLAT, KETI |
author_facet |
TENENBLAT, KETI |
author_role |
author |
dc.contributor.author.fl_str_mv |
TENENBLAT, KETI |
dc.subject.por.fl_str_mv |
Transformações de Ribaucour Superfícies de Weingarten Superfícies mínimas Curvatura média constante |
topic |
Transformações de Ribaucour Superfícies de Weingarten Superfícies mínimas Curvatura média constante |
description |
We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with flat normal bundle, motivated by the classical definition and by more recent extensions. The new definition provides a precise treatment of the geometric aspect of such transformations preserving lines of curvature and it can be applied to submanifolds whose principal curvatures have multiplicity bigger than one. Ribaucour transformations are applied as a method of obtaining linear Weingarten surfaces contained in Euclidean space, from a given such surface. Examples are included for minimal surfaces, constant mean curvature and linear Weingarten surfaces. The examples show the existence of complete hyperbolic linear Weingarten surfaces in Euclidean space. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 2017-12-07T04:35:25Z 2017-12-07T04:35:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
An. Acad. Bras. Ciênc.,v.74,n.4,p.559-575,2002 http://repositorio.unb.br/handle/10482/25822 https://dx.doi.org/10.1590/S0001-37652002000400001 |
identifier_str_mv |
An. Acad. Bras. Ciênc.,v.74,n.4,p.559-575,2002 |
url |
http://repositorio.unb.br/handle/10482/25822 https://dx.doi.org/10.1590/S0001-37652002000400001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1814508282042122240 |