Lefschetz-Pontrjagin duality for differential characters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001 |
Resumo: | A theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing <img src="http:/img/fbpe/aabc/v73n2/fo1.gif" alt="fo1.gif (867 bytes)"> given by (alpha, beta) <img SRC="http:/img/fbpe/aabc/v73n2/m1img7.gif"> (alpha * beta) [X] induces isomorphisms <img src="http:/img/fbpe/aabc/v73n2/fo2.gif" alt="fo2.gif (1110 bytes)"> <img src="http:/img/fbpe/aabc/v73n2/fo3.gif" alt="fo3.gif (1086 bytes)"> onto the smooth Pontrjagin duals. In particular, <img SRC="http:/img/fbpe/aabc/v73n2/m1img13.gif"> and <img SRC="http:/img/fbpe/aabc/v73n2/m1img13a.gif"> are injective with dense range in the group of all continuous homomorphisms into the circle. A coboundary map is introduced which yields a long sequence for the character groups associated to the pair (X, <img SRC="http:/img/fbpe/aabc/v73n2/m1img14.gif">X). The relation of the sequence to the duality mappings is analyzed. |
id |
ABC-1_ae5f4a14d72c2ca349e978a9c09497c8 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652001000200001 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Lefschetz-Pontrjagin duality for differential charactersDifferential charactersLefschetz dualitydeRham theoryA theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing <img src="http:/img/fbpe/aabc/v73n2/fo1.gif" alt="fo1.gif (867 bytes)"> given by (alpha, beta) <img SRC="http:/img/fbpe/aabc/v73n2/m1img7.gif"> (alpha * beta) [X] induces isomorphisms <img src="http:/img/fbpe/aabc/v73n2/fo2.gif" alt="fo2.gif (1110 bytes)"> <img src="http:/img/fbpe/aabc/v73n2/fo3.gif" alt="fo3.gif (1086 bytes)"> onto the smooth Pontrjagin duals. In particular, <img SRC="http:/img/fbpe/aabc/v73n2/m1img13.gif"> and <img SRC="http:/img/fbpe/aabc/v73n2/m1img13a.gif"> are injective with dense range in the group of all continuous homomorphisms into the circle. A coboundary map is introduced which yields a long sequence for the character groups associated to the pair (X, <img SRC="http:/img/fbpe/aabc/v73n2/m1img14.gif">X). The relation of the sequence to the duality mappings is analyzed.Academia Brasileira de Ciências2001-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001Anais da Academia Brasileira de Ciências v.73 n.2 2001reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652001000200001info:eu-repo/semantics/openAccessHARVEY,REESELAWSON,BLAINEeng2001-06-08T00:00:00Zoai:scielo:S0001-37652001000200001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-06-08T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Lefschetz-Pontrjagin duality for differential characters |
title |
Lefschetz-Pontrjagin duality for differential characters |
spellingShingle |
Lefschetz-Pontrjagin duality for differential characters HARVEY,REESE Differential characters Lefschetz duality deRham theory |
title_short |
Lefschetz-Pontrjagin duality for differential characters |
title_full |
Lefschetz-Pontrjagin duality for differential characters |
title_fullStr |
Lefschetz-Pontrjagin duality for differential characters |
title_full_unstemmed |
Lefschetz-Pontrjagin duality for differential characters |
title_sort |
Lefschetz-Pontrjagin duality for differential characters |
author |
HARVEY,REESE |
author_facet |
HARVEY,REESE LAWSON,BLAINE |
author_role |
author |
author2 |
LAWSON,BLAINE |
author2_role |
author |
dc.contributor.author.fl_str_mv |
HARVEY,REESE LAWSON,BLAINE |
dc.subject.por.fl_str_mv |
Differential characters Lefschetz duality deRham theory |
topic |
Differential characters Lefschetz duality deRham theory |
description |
A theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing <img src="http:/img/fbpe/aabc/v73n2/fo1.gif" alt="fo1.gif (867 bytes)"> given by (alpha, beta) <img SRC="http:/img/fbpe/aabc/v73n2/m1img7.gif"> (alpha * beta) [X] induces isomorphisms <img src="http:/img/fbpe/aabc/v73n2/fo2.gif" alt="fo2.gif (1110 bytes)"> <img src="http:/img/fbpe/aabc/v73n2/fo3.gif" alt="fo3.gif (1086 bytes)"> onto the smooth Pontrjagin duals. In particular, <img SRC="http:/img/fbpe/aabc/v73n2/m1img13.gif"> and <img SRC="http:/img/fbpe/aabc/v73n2/m1img13a.gif"> are injective with dense range in the group of all continuous homomorphisms into the circle. A coboundary map is introduced which yields a long sequence for the character groups associated to the pair (X, <img SRC="http:/img/fbpe/aabc/v73n2/m1img14.gif">X). The relation of the sequence to the duality mappings is analyzed. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652001000200001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.73 n.2 2001 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302855462780928 |