Lefschetz-Pontrjagin duality for differential characters

Detalhes bibliográficos
Autor(a) principal: HARVEY,REESE
Data de Publicação: 2001
Outros Autores: LAWSON,BLAINE
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001
Resumo: A theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing <img src="http:/img/fbpe/aabc/v73n2/fo1.gif" alt="fo1.gif (867 bytes)"> given by (alpha, beta) <img SRC="http:/img/fbpe/aabc/v73n2/m1img7.gif"> (alpha * beta) [X] induces isomorphisms <img src="http:/img/fbpe/aabc/v73n2/fo2.gif" alt="fo2.gif (1110 bytes)"> <img src="http:/img/fbpe/aabc/v73n2/fo3.gif" alt="fo3.gif (1086 bytes)"> onto the smooth Pontrjagin duals. In particular, <img SRC="http:/img/fbpe/aabc/v73n2/m1img13.gif"> and <img SRC="http:/img/fbpe/aabc/v73n2/m1img13a.gif"> are injective with dense range in the group of all continuous homomorphisms into the circle. A coboundary map is introduced which yields a long sequence for the character groups associated to the pair (X, <img SRC="http:/img/fbpe/aabc/v73n2/m1img14.gif">X). The relation of the sequence to the duality mappings is analyzed.
id ABC-1_ae5f4a14d72c2ca349e978a9c09497c8
oai_identifier_str oai:scielo:S0001-37652001000200001
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Lefschetz-Pontrjagin duality for differential charactersDifferential charactersLefschetz dualitydeRham theoryA theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing <img src="http:/img/fbpe/aabc/v73n2/fo1.gif" alt="fo1.gif (867 bytes)"> given by (alpha, beta) <img SRC="http:/img/fbpe/aabc/v73n2/m1img7.gif"> (alpha * beta) [X] induces isomorphisms <img src="http:/img/fbpe/aabc/v73n2/fo2.gif" alt="fo2.gif (1110 bytes)"> <img src="http:/img/fbpe/aabc/v73n2/fo3.gif" alt="fo3.gif (1086 bytes)"> onto the smooth Pontrjagin duals. In particular, <img SRC="http:/img/fbpe/aabc/v73n2/m1img13.gif"> and <img SRC="http:/img/fbpe/aabc/v73n2/m1img13a.gif"> are injective with dense range in the group of all continuous homomorphisms into the circle. A coboundary map is introduced which yields a long sequence for the character groups associated to the pair (X, <img SRC="http:/img/fbpe/aabc/v73n2/m1img14.gif">X). The relation of the sequence to the duality mappings is analyzed.Academia Brasileira de Ciências2001-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001Anais da Academia Brasileira de Ciências v.73 n.2 2001reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652001000200001info:eu-repo/semantics/openAccessHARVEY,REESELAWSON,BLAINEeng2001-06-08T00:00:00Zoai:scielo:S0001-37652001000200001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-06-08T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Lefschetz-Pontrjagin duality for differential characters
title Lefschetz-Pontrjagin duality for differential characters
spellingShingle Lefschetz-Pontrjagin duality for differential characters
HARVEY,REESE
Differential characters
Lefschetz duality
deRham theory
title_short Lefschetz-Pontrjagin duality for differential characters
title_full Lefschetz-Pontrjagin duality for differential characters
title_fullStr Lefschetz-Pontrjagin duality for differential characters
title_full_unstemmed Lefschetz-Pontrjagin duality for differential characters
title_sort Lefschetz-Pontrjagin duality for differential characters
author HARVEY,REESE
author_facet HARVEY,REESE
LAWSON,BLAINE
author_role author
author2 LAWSON,BLAINE
author2_role author
dc.contributor.author.fl_str_mv HARVEY,REESE
LAWSON,BLAINE
dc.subject.por.fl_str_mv Differential characters
Lefschetz duality
deRham theory
topic Differential characters
Lefschetz duality
deRham theory
description A theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing <img src="http:/img/fbpe/aabc/v73n2/fo1.gif" alt="fo1.gif (867 bytes)"> given by (alpha, beta) <img SRC="http:/img/fbpe/aabc/v73n2/m1img7.gif"> (alpha * beta) [X] induces isomorphisms <img src="http:/img/fbpe/aabc/v73n2/fo2.gif" alt="fo2.gif (1110 bytes)"> <img src="http:/img/fbpe/aabc/v73n2/fo3.gif" alt="fo3.gif (1086 bytes)"> onto the smooth Pontrjagin duals. In particular, <img SRC="http:/img/fbpe/aabc/v73n2/m1img13.gif"> and <img SRC="http:/img/fbpe/aabc/v73n2/m1img13a.gif"> are injective with dense range in the group of all continuous homomorphisms into the circle. A coboundary map is introduced which yields a long sequence for the character groups associated to the pair (X, <img SRC="http:/img/fbpe/aabc/v73n2/m1img14.gif">X). The relation of the sequence to the duality mappings is analyzed.
publishDate 2001
dc.date.none.fl_str_mv 2001-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652001000200001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.73 n.2 2001
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302855462780928