The gamma-Weibull distribution revisited

Detalhes bibliográficos
Autor(a) principal: Pogány,Tibor k.
Data de Publicação: 2010
Outros Autores: Saxena,Ram k.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026
Resumo: The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings.
id ABC-1_d455ceebef03b02ddcd02b9245723366
oai_identifier_str oai:scielo:S0001-37652010000200026
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling The gamma-Weibull distribution revisitedgamma distributionWeibull distributionconfluent Fox-Wright 1Ψ0incomplete confluent Fox-Wright 1Ψ0The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings.Academia Brasileira de Ciências2010-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026Anais da Academia Brasileira de Ciências v.82 n.2 2010reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652010000200026info:eu-repo/semantics/openAccessPogány,Tibor k.Saxena,Ram k.eng2010-06-11T00:00:00Zoai:scielo:S0001-37652010000200026Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2010-06-11T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv The gamma-Weibull distribution revisited
title The gamma-Weibull distribution revisited
spellingShingle The gamma-Weibull distribution revisited
Pogány,Tibor k.
gamma distribution
Weibull distribution
confluent Fox-Wright 1Ψ0
incomplete confluent Fox-Wright 1Ψ0
title_short The gamma-Weibull distribution revisited
title_full The gamma-Weibull distribution revisited
title_fullStr The gamma-Weibull distribution revisited
title_full_unstemmed The gamma-Weibull distribution revisited
title_sort The gamma-Weibull distribution revisited
author Pogány,Tibor k.
author_facet Pogány,Tibor k.
Saxena,Ram k.
author_role author
author2 Saxena,Ram k.
author2_role author
dc.contributor.author.fl_str_mv Pogány,Tibor k.
Saxena,Ram k.
dc.subject.por.fl_str_mv gamma distribution
Weibull distribution
confluent Fox-Wright 1Ψ0
incomplete confluent Fox-Wright 1Ψ0
topic gamma distribution
Weibull distribution
confluent Fox-Wright 1Ψ0
incomplete confluent Fox-Wright 1Ψ0
description The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings.
publishDate 2010
dc.date.none.fl_str_mv 2010-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652010000200026
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.82 n.2 2010
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302857625993216