The gamma-Weibull distribution revisited
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026 |
Resumo: | The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings. |
id |
ABC-1_d455ceebef03b02ddcd02b9245723366 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652010000200026 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
The gamma-Weibull distribution revisitedgamma distributionWeibull distributionconfluent Fox-Wright 1Ψ0incomplete confluent Fox-Wright 1Ψ0The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings.Academia Brasileira de Ciências2010-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026Anais da Academia Brasileira de Ciências v.82 n.2 2010reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652010000200026info:eu-repo/semantics/openAccessPogány,Tibor k.Saxena,Ram k.eng2010-06-11T00:00:00Zoai:scielo:S0001-37652010000200026Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2010-06-11T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
The gamma-Weibull distribution revisited |
title |
The gamma-Weibull distribution revisited |
spellingShingle |
The gamma-Weibull distribution revisited Pogány,Tibor k. gamma distribution Weibull distribution confluent Fox-Wright 1Ψ0 incomplete confluent Fox-Wright 1Ψ0 |
title_short |
The gamma-Weibull distribution revisited |
title_full |
The gamma-Weibull distribution revisited |
title_fullStr |
The gamma-Weibull distribution revisited |
title_full_unstemmed |
The gamma-Weibull distribution revisited |
title_sort |
The gamma-Weibull distribution revisited |
author |
Pogány,Tibor k. |
author_facet |
Pogány,Tibor k. Saxena,Ram k. |
author_role |
author |
author2 |
Saxena,Ram k. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Pogány,Tibor k. Saxena,Ram k. |
dc.subject.por.fl_str_mv |
gamma distribution Weibull distribution confluent Fox-Wright 1Ψ0 incomplete confluent Fox-Wright 1Ψ0 |
topic |
gamma distribution Weibull distribution confluent Fox-Wright 1Ψ0 incomplete confluent Fox-Wright 1Ψ0 |
description |
The five parameter gamma-Weibull distribution has been introduced by Leipnik and Pearce (2004). Nadarajah and Kotz (2007) have simplified it into four parameter form, using hypergeometric functions in some special cases. We show that the probability distribution function, all moments of positive order and the characteristic function of gamma-Weibull distribution of a random variable can be explicitely expressed in terms of the incomplete confluent Fox-Wright Psi-function, which is recently introduced by Srivastava and Pogány (2007). In the same time, we generalize certain results by Nadarajah and Kotz that follow as special cases of our findings. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652010000200026 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652010000200026 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.82 n.2 2010 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302857625993216 |