Solid-phase extractions in flow analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000200803 |
Resumo: | ABSTRACT Coupling solid-phase extraction (SPE) to flow systems has promoted a synergistic development. Whereas SPE mechanization leads to improved precision and higher sample throughput, as well as diminishes systematic errors and contamination risks, analyte concentration and separation from the sample matrix provides a remarkable impact on detectability and selectivity in flow analysis. Historical aspects, main cornerstones, tips for system design, and recent applications are critically reviewed, in the context of analyte(s) separation/concentration, sample clean-up, and release of sorbed chemical species involving both packed (e.g. mini-columns, cartridges, and disks) or fluidized (e.g. beads and magnetic materials) particles. Novel (bio)sorbents, selective synthetic materials, and stationary phases for low-pressure chromatography are also discussed. Moreover, the feasibility of SPE for sample treatment before chromatographic separation, as well as the exploitation of direct measurements on the solid phase (optosensing) are emphasized. |
id |
ABC-1_dfd29ab9af3e3d9f83658d55235b2452 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652018000200803 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Solid-phase extractions in flow analysisbeadsflow analysisin-line analyte concentrationin-line sample treatmentsample clean-upsolid-phase extractionABSTRACT Coupling solid-phase extraction (SPE) to flow systems has promoted a synergistic development. Whereas SPE mechanization leads to improved precision and higher sample throughput, as well as diminishes systematic errors and contamination risks, analyte concentration and separation from the sample matrix provides a remarkable impact on detectability and selectivity in flow analysis. Historical aspects, main cornerstones, tips for system design, and recent applications are critically reviewed, in the context of analyte(s) separation/concentration, sample clean-up, and release of sorbed chemical species involving both packed (e.g. mini-columns, cartridges, and disks) or fluidized (e.g. beads and magnetic materials) particles. Novel (bio)sorbents, selective synthetic materials, and stationary phases for low-pressure chromatography are also discussed. Moreover, the feasibility of SPE for sample treatment before chromatographic separation, as well as the exploitation of direct measurements on the solid phase (optosensing) are emphasized.Academia Brasileira de Ciências2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000200803Anais da Academia Brasileira de Ciências v.90 n.1 suppl.1 2018reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201820170513info:eu-repo/semantics/openAccessROCHA,FÁBIO R.P.BATISTA,ALEX D.MELCHERT,WANESSA R.ZAGATTO,ELIAS A.G.eng2018-05-04T00:00:00Zoai:scielo:S0001-37652018000200803Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2018-05-04T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Solid-phase extractions in flow analysis |
title |
Solid-phase extractions in flow analysis |
spellingShingle |
Solid-phase extractions in flow analysis ROCHA,FÁBIO R.P. beads flow analysis in-line analyte concentration in-line sample treatment sample clean-up solid-phase extraction |
title_short |
Solid-phase extractions in flow analysis |
title_full |
Solid-phase extractions in flow analysis |
title_fullStr |
Solid-phase extractions in flow analysis |
title_full_unstemmed |
Solid-phase extractions in flow analysis |
title_sort |
Solid-phase extractions in flow analysis |
author |
ROCHA,FÁBIO R.P. |
author_facet |
ROCHA,FÁBIO R.P. BATISTA,ALEX D. MELCHERT,WANESSA R. ZAGATTO,ELIAS A.G. |
author_role |
author |
author2 |
BATISTA,ALEX D. MELCHERT,WANESSA R. ZAGATTO,ELIAS A.G. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
ROCHA,FÁBIO R.P. BATISTA,ALEX D. MELCHERT,WANESSA R. ZAGATTO,ELIAS A.G. |
dc.subject.por.fl_str_mv |
beads flow analysis in-line analyte concentration in-line sample treatment sample clean-up solid-phase extraction |
topic |
beads flow analysis in-line analyte concentration in-line sample treatment sample clean-up solid-phase extraction |
description |
ABSTRACT Coupling solid-phase extraction (SPE) to flow systems has promoted a synergistic development. Whereas SPE mechanization leads to improved precision and higher sample throughput, as well as diminishes systematic errors and contamination risks, analyte concentration and separation from the sample matrix provides a remarkable impact on detectability and selectivity in flow analysis. Historical aspects, main cornerstones, tips for system design, and recent applications are critically reviewed, in the context of analyte(s) separation/concentration, sample clean-up, and release of sorbed chemical species involving both packed (e.g. mini-columns, cartridges, and disks) or fluidized (e.g. beads and magnetic materials) particles. Novel (bio)sorbents, selective synthetic materials, and stationary phases for low-pressure chromatography are also discussed. Moreover, the feasibility of SPE for sample treatment before chromatographic separation, as well as the exploitation of direct measurements on the solid phase (optosensing) are emphasized. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000200803 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000200803 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765201820170513 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.90 n.1 suppl.1 2018 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302865351901184 |