Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation

Detalhes bibliográficos
Autor(a) principal: SILVA,CARLOS ALBERTO
Data de Publicação: 2018
Outros Autores: KLAUBERG,CARINE, HUDAK,ANDREW T., VIERLING,LEE A., LIESENBERG,VERALDO, BERNETT,LUIZ G., SCHERAIBER,CLEWERSON F., SCHOENINGER,EMERSON R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000100295
Resumo: ABSTRACT Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.
id ABC-1_f177ee6554efe2ee2e3f8f296710a473
oai_identifier_str oai:scielo:S0001-37652018000100295
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputationforest inventoryLiDAR metricsk-NN ImputationRemote SensingABSTRACT Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.Academia Brasileira de Ciências2018-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000100295Anais da Academia Brasileira de Ciências v.90 n.1 2018reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201820160071info:eu-repo/semantics/openAccessSILVA,CARLOS ALBERTOKLAUBERG,CARINEHUDAK,ANDREW T.VIERLING,LEE A.LIESENBERG,VERALDOBERNETT,LUIZ G.SCHERAIBER,CLEWERSON F.SCHOENINGER,EMERSON R.eng2018-04-25T00:00:00Zoai:scielo:S0001-37652018000100295Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2018-04-25T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
title Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
spellingShingle Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
SILVA,CARLOS ALBERTO
forest inventory
LiDAR metrics
k-NN Imputation
Remote Sensing
title_short Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
title_full Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
title_fullStr Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
title_full_unstemmed Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
title_sort Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation
author SILVA,CARLOS ALBERTO
author_facet SILVA,CARLOS ALBERTO
KLAUBERG,CARINE
HUDAK,ANDREW T.
VIERLING,LEE A.
LIESENBERG,VERALDO
BERNETT,LUIZ G.
SCHERAIBER,CLEWERSON F.
SCHOENINGER,EMERSON R.
author_role author
author2 KLAUBERG,CARINE
HUDAK,ANDREW T.
VIERLING,LEE A.
LIESENBERG,VERALDO
BERNETT,LUIZ G.
SCHERAIBER,CLEWERSON F.
SCHOENINGER,EMERSON R.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv SILVA,CARLOS ALBERTO
KLAUBERG,CARINE
HUDAK,ANDREW T.
VIERLING,LEE A.
LIESENBERG,VERALDO
BERNETT,LUIZ G.
SCHERAIBER,CLEWERSON F.
SCHOENINGER,EMERSON R.
dc.subject.por.fl_str_mv forest inventory
LiDAR metrics
k-NN Imputation
Remote Sensing
topic forest inventory
LiDAR metrics
k-NN Imputation
Remote Sensing
description ABSTRACT Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000100295
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652018000100295
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-3765201820160071
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.90 n.1 2018
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302865293180928