Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Scientia Agrícola (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504 |
Resumo: | This study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete return airborne laser scanning (ALS), and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf) used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89). The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively). |
id |
USP-18_f072060669e390cc7a0633c3fe73a125 |
---|---|
oai_identifier_str |
oai:scielo:S0103-90162015000600504 |
network_acronym_str |
USP-18 |
network_name_str |
Scientia Agrícola (Online) |
repository_id_str |
|
spelling |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantationsLiDARbasal areabiometric modelforest inventoryfast-growing plantationsThis study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete return airborne laser scanning (ALS), and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf) used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89). The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively).Escola Superior de Agricultura "Luiz de Queiroz"2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504Scientia Agricola v.72 n.6 2015reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/0103-9016-2015-0070info:eu-repo/semantics/openAccessSilva,André Gracioso PeresGörgens,Eric BastosCampoe,Otávio CamargoAlvares,Clayton AlcardeStape,José LuizRodriguez,Luiz Carlos Estravizeng2015-10-21T00:00:00Zoai:scielo:S0103-90162015000600504Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2015-10-21T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations |
title |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations |
spellingShingle |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations Silva,André Gracioso Peres LiDAR basal area biometric model forest inventory fast-growing plantations |
title_short |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations |
title_full |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations |
title_fullStr |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations |
title_full_unstemmed |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations |
title_sort |
Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations |
author |
Silva,André Gracioso Peres |
author_facet |
Silva,André Gracioso Peres Görgens,Eric Bastos Campoe,Otávio Camargo Alvares,Clayton Alcarde Stape,José Luiz Rodriguez,Luiz Carlos Estraviz |
author_role |
author |
author2 |
Görgens,Eric Bastos Campoe,Otávio Camargo Alvares,Clayton Alcarde Stape,José Luiz Rodriguez,Luiz Carlos Estraviz |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Silva,André Gracioso Peres Görgens,Eric Bastos Campoe,Otávio Camargo Alvares,Clayton Alcarde Stape,José Luiz Rodriguez,Luiz Carlos Estraviz |
dc.subject.por.fl_str_mv |
LiDAR basal area biometric model forest inventory fast-growing plantations |
topic |
LiDAR basal area biometric model forest inventory fast-growing plantations |
description |
This study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete return airborne laser scanning (ALS), and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf) used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89). The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0103-9016-2015-0070 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
dc.source.none.fl_str_mv |
Scientia Agricola v.72 n.6 2015 reponame:Scientia Agrícola (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Scientia Agrícola (Online) |
collection |
Scientia Agrícola (Online) |
repository.name.fl_str_mv |
Scientia Agrícola (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
scientia@usp.br||alleoni@usp.br |
_version_ |
1748936463818424320 |