Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations

Detalhes bibliográficos
Autor(a) principal: Silva,André Gracioso Peres
Data de Publicação: 2015
Outros Autores: Görgens,Eric Bastos, Campoe,Otávio Camargo, Alvares,Clayton Alcarde, Stape,José Luiz, Rodriguez,Luiz Carlos Estraviz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Scientia Agrícola (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504
Resumo: This study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete return airborne laser scanning (ALS), and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf) used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89). The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively).
id USP-18_f072060669e390cc7a0633c3fe73a125
oai_identifier_str oai:scielo:S0103-90162015000600504
network_acronym_str USP-18
network_name_str Scientia Agrícola (Online)
repository_id_str
spelling Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantationsLiDARbasal areabiometric modelforest inventoryfast-growing plantationsThis study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete return airborne laser scanning (ALS), and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf) used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89). The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively).Escola Superior de Agricultura "Luiz de Queiroz"2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504Scientia Agricola v.72 n.6 2015reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/0103-9016-2015-0070info:eu-repo/semantics/openAccessSilva,André Gracioso PeresGörgens,Eric BastosCampoe,Otávio CamargoAlvares,Clayton AlcardeStape,José LuizRodriguez,Luiz Carlos Estravizeng2015-10-21T00:00:00Zoai:scielo:S0103-90162015000600504Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2015-10-21T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
title Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
spellingShingle Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
Silva,André Gracioso Peres
LiDAR
basal area
biometric model
forest inventory
fast-growing plantations
title_short Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
title_full Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
title_fullStr Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
title_full_unstemmed Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
title_sort Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations
author Silva,André Gracioso Peres
author_facet Silva,André Gracioso Peres
Görgens,Eric Bastos
Campoe,Otávio Camargo
Alvares,Clayton Alcarde
Stape,José Luiz
Rodriguez,Luiz Carlos Estraviz
author_role author
author2 Görgens,Eric Bastos
Campoe,Otávio Camargo
Alvares,Clayton Alcarde
Stape,José Luiz
Rodriguez,Luiz Carlos Estraviz
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Silva,André Gracioso Peres
Görgens,Eric Bastos
Campoe,Otávio Camargo
Alvares,Clayton Alcarde
Stape,José Luiz
Rodriguez,Luiz Carlos Estraviz
dc.subject.por.fl_str_mv LiDAR
basal area
biometric model
forest inventory
fast-growing plantations
topic LiDAR
basal area
biometric model
forest inventory
fast-growing plantations
description This study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs) statistics using wall-to-wall discrete return airborne laser scanning (ALS), and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf) used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89). The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93). Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively).
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000600504
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0103-9016-2015-0070
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
dc.source.none.fl_str_mv Scientia Agricola v.72 n.6 2015
reponame:Scientia Agrícola (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Scientia Agrícola (Online)
collection Scientia Agrícola (Online)
repository.name.fl_str_mv Scientia Agrícola (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv scientia@usp.br||alleoni@usp.br
_version_ 1748936463818424320