Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652022000200908 |
Resumo: | Abstract Antarctic harsh conditions favor the development of microbial adaptations. In this study, a molecular approach was applied to identify/refine the taxonomy of five yeasts isolated from different Antarctic samples, which were tested against ranges of temperature, UV radiations, salinity, and pH. Based on sequencing and phylogenetic analysis, strain CRM 1839 was confirmed as Naganishia sp., and strains CRM 1874, CRM 1565, CRM 2571, and CRM 2576 were identified as Goffeauzyma gilvescens, Goffeauzyma gastrica, Candida atlantica, and Camptobasidium sp., respectively, being this last one possibly a new species. Growth at different temperatures indicates that these yeasts are psychrotolerant, with the exception of Camptobasidium sp., which presents psychrophilic characteristics. G. gastrica recovered from marine sediment showed the best results of resistance to UV radiation, being able to grow even after the exposure to UVB dose of 9144 J/m² and UVC dose of 6102 J/m². C. atlantica isolated from glacier soil showed high cellular growth from 3 to 10% NaCl. The majority of the strains produced higher biomass at pH 7; nevertheless, G. gilvescens showed higher biomass production at pH 9. The studied Antarctic-derived yeasts have adaptations to extreme conditions, which makes them useful for biotechnological applications and studies of extremophiles. |
id |
ABC-1_f2bfcca4682c0743ec7bf611665f4409 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652022000200908 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditionsAntarcticaenvironmental stressextremophilesUV radiationAbstract Antarctic harsh conditions favor the development of microbial adaptations. In this study, a molecular approach was applied to identify/refine the taxonomy of five yeasts isolated from different Antarctic samples, which were tested against ranges of temperature, UV radiations, salinity, and pH. Based on sequencing and phylogenetic analysis, strain CRM 1839 was confirmed as Naganishia sp., and strains CRM 1874, CRM 1565, CRM 2571, and CRM 2576 were identified as Goffeauzyma gilvescens, Goffeauzyma gastrica, Candida atlantica, and Camptobasidium sp., respectively, being this last one possibly a new species. Growth at different temperatures indicates that these yeasts are psychrotolerant, with the exception of Camptobasidium sp., which presents psychrophilic characteristics. G. gastrica recovered from marine sediment showed the best results of resistance to UV radiation, being able to grow even after the exposure to UVB dose of 9144 J/m² and UVC dose of 6102 J/m². C. atlantica isolated from glacier soil showed high cellular growth from 3 to 10% NaCl. The majority of the strains produced higher biomass at pH 7; nevertheless, G. gilvescens showed higher biomass production at pH 9. The studied Antarctic-derived yeasts have adaptations to extreme conditions, which makes them useful for biotechnological applications and studies of extremophiles.Academia Brasileira de Ciências2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652022000200908Anais da Academia Brasileira de Ciências v.94 suppl.1 2022reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765202220210592info:eu-repo/semantics/openAccessFARIAS,GABRIELE S.SANTOS,JULIANA A.GIOVANELLA,PATRICIASETTE,LARA D.eng2022-04-05T00:00:00Zoai:scielo:S0001-37652022000200908Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2022-04-05T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions |
title |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions |
spellingShingle |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions FARIAS,GABRIELE S. Antarctica environmental stress extremophiles UV radiation |
title_short |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions |
title_full |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions |
title_fullStr |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions |
title_full_unstemmed |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions |
title_sort |
Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions |
author |
FARIAS,GABRIELE S. |
author_facet |
FARIAS,GABRIELE S. SANTOS,JULIANA A. GIOVANELLA,PATRICIA SETTE,LARA D. |
author_role |
author |
author2 |
SANTOS,JULIANA A. GIOVANELLA,PATRICIA SETTE,LARA D. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
FARIAS,GABRIELE S. SANTOS,JULIANA A. GIOVANELLA,PATRICIA SETTE,LARA D. |
dc.subject.por.fl_str_mv |
Antarctica environmental stress extremophiles UV radiation |
topic |
Antarctica environmental stress extremophiles UV radiation |
description |
Abstract Antarctic harsh conditions favor the development of microbial adaptations. In this study, a molecular approach was applied to identify/refine the taxonomy of five yeasts isolated from different Antarctic samples, which were tested against ranges of temperature, UV radiations, salinity, and pH. Based on sequencing and phylogenetic analysis, strain CRM 1839 was confirmed as Naganishia sp., and strains CRM 1874, CRM 1565, CRM 2571, and CRM 2576 were identified as Goffeauzyma gilvescens, Goffeauzyma gastrica, Candida atlantica, and Camptobasidium sp., respectively, being this last one possibly a new species. Growth at different temperatures indicates that these yeasts are psychrotolerant, with the exception of Camptobasidium sp., which presents psychrophilic characteristics. G. gastrica recovered from marine sediment showed the best results of resistance to UV radiation, being able to grow even after the exposure to UVB dose of 9144 J/m² and UVC dose of 6102 J/m². C. atlantica isolated from glacier soil showed high cellular growth from 3 to 10% NaCl. The majority of the strains produced higher biomass at pH 7; nevertheless, G. gilvescens showed higher biomass production at pH 9. The studied Antarctic-derived yeasts have adaptations to extreme conditions, which makes them useful for biotechnological applications and studies of extremophiles. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652022000200908 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652022000200908 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765202220210592 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.94 suppl.1 2022 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302871648600064 |