Tangency quantum cohomology and characteristic numbers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002 |
Resumo: | This work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinitesimal nature like, for example, tangency. The key concept is that of modified psi classes, which are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity. The main results are two systems of differential equations for the generating function of certain top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar way modified psi classes restrict to the boundary. This machinery is applied to various enumerative problems, among which characteristic numbers in any projective homogeneous variety, characteristic numbers for curves with cusp, prescribed triple contact, or double points. |
id |
ABC-1_f338b63af1d901f76dccbce92cfa7798 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652001000300002 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Tangency quantum cohomology and characteristic numbersEnumerative geometrycharacteristic numbersquantum cohomologyGromov-Witten invariantsThis work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinitesimal nature like, for example, tangency. The key concept is that of modified psi classes, which are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity. The main results are two systems of differential equations for the generating function of certain top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar way modified psi classes restrict to the boundary. This machinery is applied to various enumerative problems, among which characteristic numbers in any projective homogeneous variety, characteristic numbers for curves with cusp, prescribed triple contact, or double points.Academia Brasileira de Ciências2001-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002Anais da Academia Brasileira de Ciências v.73 n.3 2001reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652001000300002info:eu-repo/semantics/openAccessKOCK,JOACHIMeng2001-10-15T00:00:00Zoai:scielo:S0001-37652001000300002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-10-15T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Tangency quantum cohomology and characteristic numbers |
title |
Tangency quantum cohomology and characteristic numbers |
spellingShingle |
Tangency quantum cohomology and characteristic numbers KOCK,JOACHIM Enumerative geometry characteristic numbers quantum cohomology Gromov-Witten invariants |
title_short |
Tangency quantum cohomology and characteristic numbers |
title_full |
Tangency quantum cohomology and characteristic numbers |
title_fullStr |
Tangency quantum cohomology and characteristic numbers |
title_full_unstemmed |
Tangency quantum cohomology and characteristic numbers |
title_sort |
Tangency quantum cohomology and characteristic numbers |
author |
KOCK,JOACHIM |
author_facet |
KOCK,JOACHIM |
author_role |
author |
dc.contributor.author.fl_str_mv |
KOCK,JOACHIM |
dc.subject.por.fl_str_mv |
Enumerative geometry characteristic numbers quantum cohomology Gromov-Witten invariants |
topic |
Enumerative geometry characteristic numbers quantum cohomology Gromov-Witten invariants |
description |
This work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinitesimal nature like, for example, tangency. The key concept is that of modified psi classes, which are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity. The main results are two systems of differential equations for the generating function of certain top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar way modified psi classes restrict to the boundary. This machinery is applied to various enumerative problems, among which characteristic numbers in any projective homogeneous variety, characteristic numbers for curves with cusp, prescribed triple contact, or double points. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652001000300002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.73 n.3 2001 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302855480606720 |