Tangency quantum cohomology and characteristic numbers

Detalhes bibliográficos
Autor(a) principal: KOCK,JOACHIM
Data de Publicação: 2001
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002
Resumo: This work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinitesimal nature like, for example, tangency. The key concept is that of modified psi classes, which are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity. The main results are two systems of differential equations for the generating function of certain top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar way modified psi classes restrict to the boundary. This machinery is applied to various enumerative problems, among which characteristic numbers in any projective homogeneous variety, characteristic numbers for curves with cusp, prescribed triple contact, or double points.
id ABC-1_f338b63af1d901f76dccbce92cfa7798
oai_identifier_str oai:scielo:S0001-37652001000300002
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Tangency quantum cohomology and characteristic numbersEnumerative geometrycharacteristic numbersquantum cohomologyGromov-Witten invariantsThis work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinitesimal nature like, for example, tangency. The key concept is that of modified psi classes, which are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity. The main results are two systems of differential equations for the generating function of certain top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar way modified psi classes restrict to the boundary. This machinery is applied to various enumerative problems, among which characteristic numbers in any projective homogeneous variety, characteristic numbers for curves with cusp, prescribed triple contact, or double points.Academia Brasileira de Ciências2001-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002Anais da Academia Brasileira de Ciências v.73 n.3 2001reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652001000300002info:eu-repo/semantics/openAccessKOCK,JOACHIMeng2001-10-15T00:00:00Zoai:scielo:S0001-37652001000300002Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-10-15T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Tangency quantum cohomology and characteristic numbers
title Tangency quantum cohomology and characteristic numbers
spellingShingle Tangency quantum cohomology and characteristic numbers
KOCK,JOACHIM
Enumerative geometry
characteristic numbers
quantum cohomology
Gromov-Witten invariants
title_short Tangency quantum cohomology and characteristic numbers
title_full Tangency quantum cohomology and characteristic numbers
title_fullStr Tangency quantum cohomology and characteristic numbers
title_full_unstemmed Tangency quantum cohomology and characteristic numbers
title_sort Tangency quantum cohomology and characteristic numbers
author KOCK,JOACHIM
author_facet KOCK,JOACHIM
author_role author
dc.contributor.author.fl_str_mv KOCK,JOACHIM
dc.subject.por.fl_str_mv Enumerative geometry
characteristic numbers
quantum cohomology
Gromov-Witten invariants
topic Enumerative geometry
characteristic numbers
quantum cohomology
Gromov-Witten invariants
description This work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinitesimal nature like, for example, tangency. The key concept is that of modified psi classes, which are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity. The main results are two systems of differential equations for the generating function of certain top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar way modified psi classes restrict to the boundary. This machinery is applied to various enumerative problems, among which characteristic numbers in any projective homogeneous variety, characteristic numbers for curves with cusp, prescribed triple contact, or double points.
publishDate 2001
dc.date.none.fl_str_mv 2001-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000300002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652001000300002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.73 n.3 2001
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302855480606720