A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES

Detalhes bibliográficos
Autor(a) principal: Villavicencio, Lourdes Milagros Mendoza
Data de Publicação: 2020
Outros Autores: Mendes, David, Monteiro, Felipe Ferreira, Andrade, Lara de Melo Barbosa, Silva, Cássia Monalisa dos Santos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Climatologia (Online)
Texto Completo: https://revistas.ufpr.br/revistaabclima/article/view/70245
Resumo: This study was carried out in the Sibinacocha lake watershed in the Peruvian Andes. In this region the long-term meteorological data are scarce and there are few studies of flow forecasts. Based on this evidence, in this study we present the monthly flow simulation, using statistical models and data-oriented model, with the purpose of evaluating the performance of these methodologies. The results of the comparative statistical analyses indicated that the data-oriented models, specifically the Recurrent Neural Networks, provided great improvements over the other models applied, specifically the ability to capture the minimum and maximum monthly flow, resulting in excellent statistical values (R2=0.85, d=0.96), thus suggesting this methodology as a possible application for flow forecasts.
id ABCLIMA-1_eb7e3b9de9ee49c5cb60682a66a51080
oai_identifier_str oai:revistas.ufpr.br:article/70245
network_acronym_str ABCLIMA-1
network_name_str Revista Brasileira de Climatologia (Online)
repository_id_str
spelling A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIESTime-series analysis; Streamflow Forecasting; Neural Networks.This study was carried out in the Sibinacocha lake watershed in the Peruvian Andes. In this region the long-term meteorological data are scarce and there are few studies of flow forecasts. Based on this evidence, in this study we present the monthly flow simulation, using statistical models and data-oriented model, with the purpose of evaluating the performance of these methodologies. The results of the comparative statistical analyses indicated that the data-oriented models, specifically the Recurrent Neural Networks, provided great improvements over the other models applied, specifically the ability to capture the minimum and maximum monthly flow, resulting in excellent statistical values (R2=0.85, d=0.96), thus suggesting this methodology as a possible application for flow forecasts.Universidade Federal do ParanáCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, Código de Financiamento 001Villavicencio, Lourdes Milagros MendozaMendes, DavidMonteiro, Felipe FerreiraAndrade, Lara de Melo BarbosaSilva, Cássia Monalisa dos Santos2020-05-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/xmlhttps://revistas.ufpr.br/revistaabclima/article/view/7024510.5380/abclima.v26i0.70245Revista Brasileira de Climatologia; v. 26 (2020)2237-86421980-055X10.5380/abclima.v26i0reponame:Revista Brasileira de Climatologia (Online)instname:ABClimainstacron:ABCLIMAenghttps://revistas.ufpr.br/revistaabclima/article/view/70245/40768https://revistas.ufpr.br/revistaabclima/article/view/70245/41910Direitos autorais 2020 Lourdes Villavicencio, David Mendes, Felipe Monteiro, Lara Andrade, Cassia Silvainfo:eu-repo/semantics/openAccess2020-05-22T14:36:40Zoai:revistas.ufpr.br:article/70245Revistahttps://revistas.ufpr.br/revistaabclima/indexPUBhttps://revistas.ufpr.br/revistaabclima/oaiegalvani@usp.br || rbclima2014@gmail.com2237-86421980-055Xopendoar:2020-05-22T14:36:40Revista Brasileira de Climatologia (Online) - ABClimafalse
dc.title.none.fl_str_mv A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
title A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
spellingShingle A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
Villavicencio, Lourdes Milagros Mendoza
Time-series analysis; Streamflow Forecasting; Neural Networks.
title_short A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
title_full A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
title_fullStr A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
title_full_unstemmed A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
title_sort A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
author Villavicencio, Lourdes Milagros Mendoza
author_facet Villavicencio, Lourdes Milagros Mendoza
Mendes, David
Monteiro, Felipe Ferreira
Andrade, Lara de Melo Barbosa
Silva, Cássia Monalisa dos Santos
author_role author
author2 Mendes, David
Monteiro, Felipe Ferreira
Andrade, Lara de Melo Barbosa
Silva, Cássia Monalisa dos Santos
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Código de Financiamento 001
dc.contributor.author.fl_str_mv Villavicencio, Lourdes Milagros Mendoza
Mendes, David
Monteiro, Felipe Ferreira
Andrade, Lara de Melo Barbosa
Silva, Cássia Monalisa dos Santos
dc.subject.por.fl_str_mv Time-series analysis; Streamflow Forecasting; Neural Networks.
topic Time-series analysis; Streamflow Forecasting; Neural Networks.
description This study was carried out in the Sibinacocha lake watershed in the Peruvian Andes. In this region the long-term meteorological data are scarce and there are few studies of flow forecasts. Based on this evidence, in this study we present the monthly flow simulation, using statistical models and data-oriented model, with the purpose of evaluating the performance of these methodologies. The results of the comparative statistical analyses indicated that the data-oriented models, specifically the Recurrent Neural Networks, provided great improvements over the other models applied, specifically the ability to capture the minimum and maximum monthly flow, resulting in excellent statistical values (R2=0.85, d=0.96), thus suggesting this methodology as a possible application for flow forecasts.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-22
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/revistaabclima/article/view/70245
10.5380/abclima.v26i0.70245
url https://revistas.ufpr.br/revistaabclima/article/view/70245
identifier_str_mv 10.5380/abclima.v26i0.70245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufpr.br/revistaabclima/article/view/70245/40768
https://revistas.ufpr.br/revistaabclima/article/view/70245/41910
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/xml
dc.coverage.none.fl_str_mv


dc.publisher.none.fl_str_mv Universidade Federal do Paraná
publisher.none.fl_str_mv Universidade Federal do Paraná
dc.source.none.fl_str_mv Revista Brasileira de Climatologia; v. 26 (2020)
2237-8642
1980-055X
10.5380/abclima.v26i0
reponame:Revista Brasileira de Climatologia (Online)
instname:ABClima
instacron:ABCLIMA
instname_str ABClima
instacron_str ABCLIMA
institution ABCLIMA
reponame_str Revista Brasileira de Climatologia (Online)
collection Revista Brasileira de Climatologia (Online)
repository.name.fl_str_mv Revista Brasileira de Climatologia (Online) - ABClima
repository.mail.fl_str_mv egalvani@usp.br || rbclima2014@gmail.com
_version_ 1754839542420996096