A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Climatologia (Online) |
Texto Completo: | https://revistas.ufpr.br/revistaabclima/article/view/70245 |
Resumo: | This study was carried out in the Sibinacocha lake watershed in the Peruvian Andes. In this region the long-term meteorological data are scarce and there are few studies of flow forecasts. Based on this evidence, in this study we present the monthly flow simulation, using statistical models and data-oriented model, with the purpose of evaluating the performance of these methodologies. The results of the comparative statistical analyses indicated that the data-oriented models, specifically the Recurrent Neural Networks, provided great improvements over the other models applied, specifically the ability to capture the minimum and maximum monthly flow, resulting in excellent statistical values (R2=0.85, d=0.96), thus suggesting this methodology as a possible application for flow forecasts. |
id |
ABCLIMA-1_eb7e3b9de9ee49c5cb60682a66a51080 |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/70245 |
network_acronym_str |
ABCLIMA-1 |
network_name_str |
Revista Brasileira de Climatologia (Online) |
repository_id_str |
|
spelling |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIESTime-series analysis; Streamflow Forecasting; Neural Networks.This study was carried out in the Sibinacocha lake watershed in the Peruvian Andes. In this region the long-term meteorological data are scarce and there are few studies of flow forecasts. Based on this evidence, in this study we present the monthly flow simulation, using statistical models and data-oriented model, with the purpose of evaluating the performance of these methodologies. The results of the comparative statistical analyses indicated that the data-oriented models, specifically the Recurrent Neural Networks, provided great improvements over the other models applied, specifically the ability to capture the minimum and maximum monthly flow, resulting in excellent statistical values (R2=0.85, d=0.96), thus suggesting this methodology as a possible application for flow forecasts.Universidade Federal do ParanáCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, Código de Financiamento 001Villavicencio, Lourdes Milagros MendozaMendes, DavidMonteiro, Felipe FerreiraAndrade, Lara de Melo BarbosaSilva, Cássia Monalisa dos Santos2020-05-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/xmlhttps://revistas.ufpr.br/revistaabclima/article/view/7024510.5380/abclima.v26i0.70245Revista Brasileira de Climatologia; v. 26 (2020)2237-86421980-055X10.5380/abclima.v26i0reponame:Revista Brasileira de Climatologia (Online)instname:ABClimainstacron:ABCLIMAenghttps://revistas.ufpr.br/revistaabclima/article/view/70245/40768https://revistas.ufpr.br/revistaabclima/article/view/70245/41910Direitos autorais 2020 Lourdes Villavicencio, David Mendes, Felipe Monteiro, Lara Andrade, Cassia Silvainfo:eu-repo/semantics/openAccess2020-05-22T14:36:40Zoai:revistas.ufpr.br:article/70245Revistahttps://revistas.ufpr.br/revistaabclima/indexPUBhttps://revistas.ufpr.br/revistaabclima/oaiegalvani@usp.br || rbclima2014@gmail.com2237-86421980-055Xopendoar:2020-05-22T14:36:40Revista Brasileira de Climatologia (Online) - ABClimafalse |
dc.title.none.fl_str_mv |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES |
title |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES |
spellingShingle |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES Villavicencio, Lourdes Milagros Mendoza Time-series analysis; Streamflow Forecasting; Neural Networks. |
title_short |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES |
title_full |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES |
title_fullStr |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES |
title_full_unstemmed |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES |
title_sort |
A COMPARISION USING STATISTICAL AND MACHINE LEARNING METHODS FOR STREAMFLOW TIME SERIES |
author |
Villavicencio, Lourdes Milagros Mendoza |
author_facet |
Villavicencio, Lourdes Milagros Mendoza Mendes, David Monteiro, Felipe Ferreira Andrade, Lara de Melo Barbosa Silva, Cássia Monalisa dos Santos |
author_role |
author |
author2 |
Mendes, David Monteiro, Felipe Ferreira Andrade, Lara de Melo Barbosa Silva, Cássia Monalisa dos Santos |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Código de Financiamento 001 |
dc.contributor.author.fl_str_mv |
Villavicencio, Lourdes Milagros Mendoza Mendes, David Monteiro, Felipe Ferreira Andrade, Lara de Melo Barbosa Silva, Cássia Monalisa dos Santos |
dc.subject.por.fl_str_mv |
Time-series analysis; Streamflow Forecasting; Neural Networks. |
topic |
Time-series analysis; Streamflow Forecasting; Neural Networks. |
description |
This study was carried out in the Sibinacocha lake watershed in the Peruvian Andes. In this region the long-term meteorological data are scarce and there are few studies of flow forecasts. Based on this evidence, in this study we present the monthly flow simulation, using statistical models and data-oriented model, with the purpose of evaluating the performance of these methodologies. The results of the comparative statistical analyses indicated that the data-oriented models, specifically the Recurrent Neural Networks, provided great improvements over the other models applied, specifically the ability to capture the minimum and maximum monthly flow, resulting in excellent statistical values (R2=0.85, d=0.96), thus suggesting this methodology as a possible application for flow forecasts. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-22 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/revistaabclima/article/view/70245 10.5380/abclima.v26i0.70245 |
url |
https://revistas.ufpr.br/revistaabclima/article/view/70245 |
identifier_str_mv |
10.5380/abclima.v26i0.70245 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/revistaabclima/article/view/70245/40768 https://revistas.ufpr.br/revistaabclima/article/view/70245/41910 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/xml |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Universidade Federal do Paraná |
publisher.none.fl_str_mv |
Universidade Federal do Paraná |
dc.source.none.fl_str_mv |
Revista Brasileira de Climatologia; v. 26 (2020) 2237-8642 1980-055X 10.5380/abclima.v26i0 reponame:Revista Brasileira de Climatologia (Online) instname:ABClima instacron:ABCLIMA |
instname_str |
ABClima |
instacron_str |
ABCLIMA |
institution |
ABCLIMA |
reponame_str |
Revista Brasileira de Climatologia (Online) |
collection |
Revista Brasileira de Climatologia (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Climatologia (Online) - ABClima |
repository.mail.fl_str_mv |
egalvani@usp.br || rbclima2014@gmail.com |
_version_ |
1754839542420996096 |