Flexure Based Energy Dissipating Device in Self-Centering Braces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000800510 |
Resumo: | Abstract Self-centering braces, in the current stage of development can accommodate large deformation and force levels. However, there is still a need for improvement of the energy dissipation mechanisms commonly incorporated in these braces. Yield based energy dissipation systems can overcome some of the problems faced with friction-based devices, such as susceptibility to bolt relaxation, long-term creep of friction material and excessive flexing arising in the outer tubes due to friction bolts. However, in these alternative systems multi-wave buckling of the yielding core is present, which is the leading cause of an asymmetric hysteresis of the brace. Hence, in this study, U-shape flexural plates (UFPs) are analyzed as an alternative energy-dissipating device in real scale self-centering braces with a finite element modeling approach. UFP plates yield in flexure and when comparing to direct tension/compression yielding members, they show lower strain demand, resulting in a larger displacement capacity. Implementation of the UFP units in the brace produces a flag shape hysteresis with minimal residual deformation. The proposed system provides some advantages when compared to previous models in terms of increased redundancy, symmetric hysteresis and a more gradual stiffness change. |
id |
ABCM-1_8a1b1ccd7a6901aeabca3459cb440804 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252019000800510 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Flexure Based Energy Dissipating Device in Self-Centering BracesSelf-centering braceenergy dissipationflexureUFPsfinite element modelingAbstract Self-centering braces, in the current stage of development can accommodate large deformation and force levels. However, there is still a need for improvement of the energy dissipation mechanisms commonly incorporated in these braces. Yield based energy dissipation systems can overcome some of the problems faced with friction-based devices, such as susceptibility to bolt relaxation, long-term creep of friction material and excessive flexing arising in the outer tubes due to friction bolts. However, in these alternative systems multi-wave buckling of the yielding core is present, which is the leading cause of an asymmetric hysteresis of the brace. Hence, in this study, U-shape flexural plates (UFPs) are analyzed as an alternative energy-dissipating device in real scale self-centering braces with a finite element modeling approach. UFP plates yield in flexure and when comparing to direct tension/compression yielding members, they show lower strain demand, resulting in a larger displacement capacity. Implementation of the UFP units in the brace produces a flag shape hysteresis with minimal residual deformation. The proposed system provides some advantages when compared to previous models in terms of increased redundancy, symmetric hysteresis and a more gradual stiffness change.Associação Brasileira de Ciências Mecânicas2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000800510Latin American Journal of Solids and Structures v.16 n.8 2019reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78255807info:eu-repo/semantics/openAccessXhahysa,AnilaKahraman,SerapGirgin,Sadik Caneng2019-10-25T00:00:00Zoai:scielo:S1679-78252019000800510Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2019-10-25T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Flexure Based Energy Dissipating Device in Self-Centering Braces |
title |
Flexure Based Energy Dissipating Device in Self-Centering Braces |
spellingShingle |
Flexure Based Energy Dissipating Device in Self-Centering Braces Xhahysa,Anila Self-centering brace energy dissipation flexure UFPs finite element modeling |
title_short |
Flexure Based Energy Dissipating Device in Self-Centering Braces |
title_full |
Flexure Based Energy Dissipating Device in Self-Centering Braces |
title_fullStr |
Flexure Based Energy Dissipating Device in Self-Centering Braces |
title_full_unstemmed |
Flexure Based Energy Dissipating Device in Self-Centering Braces |
title_sort |
Flexure Based Energy Dissipating Device in Self-Centering Braces |
author |
Xhahysa,Anila |
author_facet |
Xhahysa,Anila Kahraman,Serap Girgin,Sadik Can |
author_role |
author |
author2 |
Kahraman,Serap Girgin,Sadik Can |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Xhahysa,Anila Kahraman,Serap Girgin,Sadik Can |
dc.subject.por.fl_str_mv |
Self-centering brace energy dissipation flexure UFPs finite element modeling |
topic |
Self-centering brace energy dissipation flexure UFPs finite element modeling |
description |
Abstract Self-centering braces, in the current stage of development can accommodate large deformation and force levels. However, there is still a need for improvement of the energy dissipation mechanisms commonly incorporated in these braces. Yield based energy dissipation systems can overcome some of the problems faced with friction-based devices, such as susceptibility to bolt relaxation, long-term creep of friction material and excessive flexing arising in the outer tubes due to friction bolts. However, in these alternative systems multi-wave buckling of the yielding core is present, which is the leading cause of an asymmetric hysteresis of the brace. Hence, in this study, U-shape flexural plates (UFPs) are analyzed as an alternative energy-dissipating device in real scale self-centering braces with a finite element modeling approach. UFP plates yield in flexure and when comparing to direct tension/compression yielding members, they show lower strain demand, resulting in a larger displacement capacity. Implementation of the UFP units in the brace produces a flag shape hysteresis with minimal residual deformation. The proposed system provides some advantages when compared to previous models in terms of increased redundancy, symmetric hysteresis and a more gradual stiffness change. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000800510 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000800510 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78255807 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.16 n.8 2019 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302890334224384 |