A Multi-objective, active fuzzy force controller in control of flexible wiper system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000900002 |
Resumo: | Chaotic vibration has been identified in the flexible automotive wiper blade at certain wiping speeds. This irregular vibration not only decreases the wiping efficiency, but also degrades the driving comfort. A reliable nonlinear system identification namely nonlinear auto regressive exogenous Elman neural network (NARXENN) was adopted in first stage of this survey to model the flexible dynamics of wiper blade with acquired experimental data. In controller design part, taking into account environmental and external disturbances that cause changes in the dynamic characteristics of the system demanded a robust controller to make a trade off between the worst and best scenario. An active fuzzy force controller (AFLC) supervised by multi objective genetic algorithm (MOGA) is developed to keep both interests of noise and vibration redaction of automobile wiper blade at the reasonable rise time. |
id |
ABCM-1_d16fa351e5d9232673312bfa6ffd7c6d |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252014000900002 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
A Multi-objective, active fuzzy force controller in control of flexible wiper systemAutomotive wipersystem identificationfuzzy logicactive force controlobjective genetic algorithmChaotic vibration has been identified in the flexible automotive wiper blade at certain wiping speeds. This irregular vibration not only decreases the wiping efficiency, but also degrades the driving comfort. A reliable nonlinear system identification namely nonlinear auto regressive exogenous Elman neural network (NARXENN) was adopted in first stage of this survey to model the flexible dynamics of wiper blade with acquired experimental data. In controller design part, taking into account environmental and external disturbances that cause changes in the dynamic characteristics of the system demanded a robust controller to make a trade off between the worst and best scenario. An active fuzzy force controller (AFLC) supervised by multi objective genetic algorithm (MOGA) is developed to keep both interests of noise and vibration redaction of automobile wiper blade at the reasonable rise time.Associação Brasileira de Ciências Mecânicas2014-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000900002Latin American Journal of Solids and Structures v.11 n.9 2014reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1679-78252014000900002info:eu-repo/semantics/openAccessZolfagharian,AliGhasemi,Seyed EbrahimImani,Misagheng2014-06-16T00:00:00Zoai:scielo:S1679-78252014000900002Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2014-06-16T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
A Multi-objective, active fuzzy force controller in control of flexible wiper system |
title |
A Multi-objective, active fuzzy force controller in control of flexible wiper system |
spellingShingle |
A Multi-objective, active fuzzy force controller in control of flexible wiper system Zolfagharian,Ali Automotive wiper system identification fuzzy logic active force control objective genetic algorithm |
title_short |
A Multi-objective, active fuzzy force controller in control of flexible wiper system |
title_full |
A Multi-objective, active fuzzy force controller in control of flexible wiper system |
title_fullStr |
A Multi-objective, active fuzzy force controller in control of flexible wiper system |
title_full_unstemmed |
A Multi-objective, active fuzzy force controller in control of flexible wiper system |
title_sort |
A Multi-objective, active fuzzy force controller in control of flexible wiper system |
author |
Zolfagharian,Ali |
author_facet |
Zolfagharian,Ali Ghasemi,Seyed Ebrahim Imani,Misagh |
author_role |
author |
author2 |
Ghasemi,Seyed Ebrahim Imani,Misagh |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Zolfagharian,Ali Ghasemi,Seyed Ebrahim Imani,Misagh |
dc.subject.por.fl_str_mv |
Automotive wiper system identification fuzzy logic active force control objective genetic algorithm |
topic |
Automotive wiper system identification fuzzy logic active force control objective genetic algorithm |
description |
Chaotic vibration has been identified in the flexible automotive wiper blade at certain wiping speeds. This irregular vibration not only decreases the wiping efficiency, but also degrades the driving comfort. A reliable nonlinear system identification namely nonlinear auto regressive exogenous Elman neural network (NARXENN) was adopted in first stage of this survey to model the flexible dynamics of wiper blade with acquired experimental data. In controller design part, taking into account environmental and external disturbances that cause changes in the dynamic characteristics of the system demanded a robust controller to make a trade off between the worst and best scenario. An active fuzzy force controller (AFLC) supervised by multi objective genetic algorithm (MOGA) is developed to keep both interests of noise and vibration redaction of automobile wiper blade at the reasonable rise time. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000900002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000900002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1679-78252014000900002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.11 n.9 2014 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302887646724096 |