Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000600501 |
Resumo: | Abstract The construction of the cross passage changes the main tunnels segment from a complete cylindrical structure to a notched unstable stressed structure. Thus, the overall force (bending and shearing) performance of the main tunnels is considerably decreased. The excavation of the cross passage also destroys the stability of the original soil layer and main tunnels and causes difficulty in avoiding the settlement of the surface and main tunnels. Numerical simulation analysis of the mechanical characteristics and influencing factors analysis were carried out using FLAC3D. Results show that (1) the construction of the cross passage largely disturbs the main tunnels. The settlement of the intersection part of the main tunnels and cross passage is mainly concentrated from −7 m to 7 m. (2) During the construction of the cross passage, the original main tunnels are subjected to stress redistribution, which causes stress concentration in the intersecting segments, especially in the opening side segment has an unfavorable force form in which the upper and lower sections are integrally pulled. (3) The construction of the cross passage causes a large tensile stress area in the structure as well. As a result, the overall tension of the upper and lower sections of the structure and the compression of the hance are unfavorable. (4) The influence of the excavation of the cross passage on the surface and main tunnels is related to the buried depth, intersection angle, excavation method, and grouting range. Therefore, the influence of different parameters can be analyzed by changing the model parameters. |
id |
ABCM-1_ee28e68a604ff7dd389d2db459c9e340 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252019000600501 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Constructionsubwaycross passagemain tunnelsnumerical simulationconstruction mechanisminfluencing factorsAbstract The construction of the cross passage changes the main tunnels segment from a complete cylindrical structure to a notched unstable stressed structure. Thus, the overall force (bending and shearing) performance of the main tunnels is considerably decreased. The excavation of the cross passage also destroys the stability of the original soil layer and main tunnels and causes difficulty in avoiding the settlement of the surface and main tunnels. Numerical simulation analysis of the mechanical characteristics and influencing factors analysis were carried out using FLAC3D. Results show that (1) the construction of the cross passage largely disturbs the main tunnels. The settlement of the intersection part of the main tunnels and cross passage is mainly concentrated from −7 m to 7 m. (2) During the construction of the cross passage, the original main tunnels are subjected to stress redistribution, which causes stress concentration in the intersecting segments, especially in the opening side segment has an unfavorable force form in which the upper and lower sections are integrally pulled. (3) The construction of the cross passage causes a large tensile stress area in the structure as well. As a result, the overall tension of the upper and lower sections of the structure and the compression of the hance are unfavorable. (4) The influence of the excavation of the cross passage on the surface and main tunnels is related to the buried depth, intersection angle, excavation method, and grouting range. Therefore, the influence of different parameters can be analyzed by changing the model parameters.Associação Brasileira de Ciências Mecânicas2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000600501Latin American Journal of Solids and Structures v.16 n.6 2019reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78255512info:eu-repo/semantics/openAccessKe,WuShuaishuai,CuiQianjin,ZhangZheng,ZhangJiahui,ZhaoYalin,Yueng2019-06-26T00:00:00Zoai:scielo:S1679-78252019000600501Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2019-06-26T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction |
title |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction |
spellingShingle |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction Ke,Wu subway cross passage main tunnels numerical simulation construction mechanism influencing factors |
title_short |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction |
title_full |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction |
title_fullStr |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction |
title_full_unstemmed |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction |
title_sort |
Mechanical Mechanism Analysis and Influencing Factors of Subway Cross Passage Construction |
author |
Ke,Wu |
author_facet |
Ke,Wu Shuaishuai,Cui Qianjin,Zhang Zheng,Zhang Jiahui,Zhao Yalin,Yu |
author_role |
author |
author2 |
Shuaishuai,Cui Qianjin,Zhang Zheng,Zhang Jiahui,Zhao Yalin,Yu |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Ke,Wu Shuaishuai,Cui Qianjin,Zhang Zheng,Zhang Jiahui,Zhao Yalin,Yu |
dc.subject.por.fl_str_mv |
subway cross passage main tunnels numerical simulation construction mechanism influencing factors |
topic |
subway cross passage main tunnels numerical simulation construction mechanism influencing factors |
description |
Abstract The construction of the cross passage changes the main tunnels segment from a complete cylindrical structure to a notched unstable stressed structure. Thus, the overall force (bending and shearing) performance of the main tunnels is considerably decreased. The excavation of the cross passage also destroys the stability of the original soil layer and main tunnels and causes difficulty in avoiding the settlement of the surface and main tunnels. Numerical simulation analysis of the mechanical characteristics and influencing factors analysis were carried out using FLAC3D. Results show that (1) the construction of the cross passage largely disturbs the main tunnels. The settlement of the intersection part of the main tunnels and cross passage is mainly concentrated from −7 m to 7 m. (2) During the construction of the cross passage, the original main tunnels are subjected to stress redistribution, which causes stress concentration in the intersecting segments, especially in the opening side segment has an unfavorable force form in which the upper and lower sections are integrally pulled. (3) The construction of the cross passage causes a large tensile stress area in the structure as well. As a result, the overall tension of the upper and lower sections of the structure and the compression of the hance are unfavorable. (4) The influence of the excavation of the cross passage on the surface and main tunnels is related to the buried depth, intersection angle, excavation method, and grouting range. Therefore, the influence of different parameters can be analyzed by changing the model parameters. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000600501 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000600501 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78255512 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.16 n.6 2019 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302890056351744 |