Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000700504 |
Resumo: | Abstract The behavior of the tuned liquid column damper (TLCD) is analyzed in the control of non-linear structures subjected to random seismic excitations. The structure is modeled as a system of one degree of freedom with incursion in the non-linear range. The Bouc-Wen hysteretic model is used to model the non-linear behavior of the structure. A stationary stochastic analysis is performed in the domain of the frequency. An equivalent statistical linearization was used for the analysis of the main system and the TLCD. The TLCD parameters considered for the optimization process were the frequency and the head loss coefficient. Two target functions were considered, (i) reduction of the main displacement of the system, (ii) reduction of the hysteretic energy. Two random processes were considered as seismic excitation, first a broad bandwidth process and secondly a narrow bandwidth process. The results show that for a broad bandwidth process, the TLCD tends to tune with the linear equivalent frequency of the system in the case without TLCD, while for the narrow bandwidth process, it tunes (TLCD) with the dominant frequency of the input. It is seen that the TLCD becomes detuned with regard to the frequency of the structure as the structure becomes more non-linear. It is also seen that the optimal tuning ratio of the TLCD is unsensitive to the mass ratio of the device and the main damping ratio of the system. It is also concluded that in case of flexible structures, the optimal head loss coefficient tends to be lower and increases with regard to its length ratio. It is seen that the effectiveness of the TLCD is greater for higher mass ratios of the device. In addition, it is found that the optimal TLCD becomes less effective as the structure enters the non-linear range, showing lower efficiency than what is seen in the literature for optimal TLCDs in linear structures. |
id |
ABCM-1_ee2cee75233692ecdbb5ef835c778aa7 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252018000700504 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitationsTuned liquid column dampernon-linear structureshysteretic energyAbstract The behavior of the tuned liquid column damper (TLCD) is analyzed in the control of non-linear structures subjected to random seismic excitations. The structure is modeled as a system of one degree of freedom with incursion in the non-linear range. The Bouc-Wen hysteretic model is used to model the non-linear behavior of the structure. A stationary stochastic analysis is performed in the domain of the frequency. An equivalent statistical linearization was used for the analysis of the main system and the TLCD. The TLCD parameters considered for the optimization process were the frequency and the head loss coefficient. Two target functions were considered, (i) reduction of the main displacement of the system, (ii) reduction of the hysteretic energy. Two random processes were considered as seismic excitation, first a broad bandwidth process and secondly a narrow bandwidth process. The results show that for a broad bandwidth process, the TLCD tends to tune with the linear equivalent frequency of the system in the case without TLCD, while for the narrow bandwidth process, it tunes (TLCD) with the dominant frequency of the input. It is seen that the TLCD becomes detuned with regard to the frequency of the structure as the structure becomes more non-linear. It is also seen that the optimal tuning ratio of the TLCD is unsensitive to the mass ratio of the device and the main damping ratio of the system. It is also concluded that in case of flexible structures, the optimal head loss coefficient tends to be lower and increases with regard to its length ratio. It is seen that the effectiveness of the TLCD is greater for higher mass ratios of the device. In addition, it is found that the optimal TLCD becomes less effective as the structure enters the non-linear range, showing lower efficiency than what is seen in the literature for optimal TLCDs in linear structures.Associação Brasileira de Ciências Mecânicas2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000700504Latin American Journal of Solids and Structures v.15 n.7 2018reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78254845info:eu-repo/semantics/openAccessEspinoza,GildaCarrillo,CarlosSuazo,Alvaroeng2018-07-17T00:00:00Zoai:scielo:S1679-78252018000700504Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2018-07-17T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations |
title |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations |
spellingShingle |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations Espinoza,Gilda Tuned liquid column damper non-linear structures hysteretic energy |
title_short |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations |
title_full |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations |
title_fullStr |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations |
title_full_unstemmed |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations |
title_sort |
Analysis of a tuned liquid column damper in non-linear structures subjected to seismic excitations |
author |
Espinoza,Gilda |
author_facet |
Espinoza,Gilda Carrillo,Carlos Suazo,Alvaro |
author_role |
author |
author2 |
Carrillo,Carlos Suazo,Alvaro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Espinoza,Gilda Carrillo,Carlos Suazo,Alvaro |
dc.subject.por.fl_str_mv |
Tuned liquid column damper non-linear structures hysteretic energy |
topic |
Tuned liquid column damper non-linear structures hysteretic energy |
description |
Abstract The behavior of the tuned liquid column damper (TLCD) is analyzed in the control of non-linear structures subjected to random seismic excitations. The structure is modeled as a system of one degree of freedom with incursion in the non-linear range. The Bouc-Wen hysteretic model is used to model the non-linear behavior of the structure. A stationary stochastic analysis is performed in the domain of the frequency. An equivalent statistical linearization was used for the analysis of the main system and the TLCD. The TLCD parameters considered for the optimization process were the frequency and the head loss coefficient. Two target functions were considered, (i) reduction of the main displacement of the system, (ii) reduction of the hysteretic energy. Two random processes were considered as seismic excitation, first a broad bandwidth process and secondly a narrow bandwidth process. The results show that for a broad bandwidth process, the TLCD tends to tune with the linear equivalent frequency of the system in the case without TLCD, while for the narrow bandwidth process, it tunes (TLCD) with the dominant frequency of the input. It is seen that the TLCD becomes detuned with regard to the frequency of the structure as the structure becomes more non-linear. It is also seen that the optimal tuning ratio of the TLCD is unsensitive to the mass ratio of the device and the main damping ratio of the system. It is also concluded that in case of flexible structures, the optimal head loss coefficient tends to be lower and increases with regard to its length ratio. It is seen that the effectiveness of the TLCD is greater for higher mass ratios of the device. In addition, it is found that the optimal TLCD becomes less effective as the structure enters the non-linear range, showing lower efficiency than what is seen in the literature for optimal TLCDs in linear structures. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000700504 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000700504 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78254845 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.15 n.7 2018 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302889621192704 |