Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper

Detalhes bibliográficos
Autor(a) principal: Shahrabi,Mostafa
Data de Publicação: 2019
Outros Autores: Bargi,Khosrow
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700509
Resumo: Abstract Safety is a key design criterion for floating structures. A high rate of mooring accidents has been reported over the past decades. Preventing mooring line failure is a key design objective for floating breakwater systems. The mooring system comprises sets of mooring lines anchored to the seabed. These components are exposed to highly cyclic nonlinear load fluctuations induced by an irregular wave climate during their service life. DNVGL-OS-E301 classifies the mooring lines for floating breakwaters as long-term elements that should be evaluated according to the fatigue limit state. Fatigue of mooring lines needs to be monitored and evaluated to warrant the station keeping and integrity of overall system. Applying an additional control device to a floating breakwater mitigates the structural response and hence mobilized tension in mooring system. The focus of present study was to examine the effect of an additional control device on fatigue life of mooring lines for floating breakwaters. To evaluate the effect of a control device on the fatigue behavior of mooring lines, a floating breakwater was simulated with a tuned liquid column damper (TLCD) attached. A time-dependent approach based on S-N curves in conjunction with the Palmgren-Miner rule was employed to evaluate the mooring line fatigue. This paper presents a further parametric study focused on the effect of TLCD on fairlead point displacement, mobilized tension, damage rate, and fatigue life of mooring lines. The results showed that TLCD increased the fatigue life of mooring line and thus dramatically decreased the likelihood of the mooring system being damaged by fatigue. This would reduce the maintenance costs and increase the lifetime and operational safety of floating breakwater. In addition, the presented case study showed that failure probability of mooring lines against fatigue damage was also reduced and was acceptable for the safety factor defined in DNVGL-OS-E301. This proposed approach of applying a TLCD is a practical tool for designing the components of a floating breakwater more efficiently.
id ABCM-1_fe465b9c3a770dfafe7fde893e5f0a8e
oai_identifier_str oai:scielo:S1679-78252019000700509
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damperfloating breakwater (FB)tuned liquid column damper (TLCD)fatigue assessmentmooring systemS-N curvesstructural controlAbstract Safety is a key design criterion for floating structures. A high rate of mooring accidents has been reported over the past decades. Preventing mooring line failure is a key design objective for floating breakwater systems. The mooring system comprises sets of mooring lines anchored to the seabed. These components are exposed to highly cyclic nonlinear load fluctuations induced by an irregular wave climate during their service life. DNVGL-OS-E301 classifies the mooring lines for floating breakwaters as long-term elements that should be evaluated according to the fatigue limit state. Fatigue of mooring lines needs to be monitored and evaluated to warrant the station keeping and integrity of overall system. Applying an additional control device to a floating breakwater mitigates the structural response and hence mobilized tension in mooring system. The focus of present study was to examine the effect of an additional control device on fatigue life of mooring lines for floating breakwaters. To evaluate the effect of a control device on the fatigue behavior of mooring lines, a floating breakwater was simulated with a tuned liquid column damper (TLCD) attached. A time-dependent approach based on S-N curves in conjunction with the Palmgren-Miner rule was employed to evaluate the mooring line fatigue. This paper presents a further parametric study focused on the effect of TLCD on fairlead point displacement, mobilized tension, damage rate, and fatigue life of mooring lines. The results showed that TLCD increased the fatigue life of mooring line and thus dramatically decreased the likelihood of the mooring system being damaged by fatigue. This would reduce the maintenance costs and increase the lifetime and operational safety of floating breakwater. In addition, the presented case study showed that failure probability of mooring lines against fatigue damage was also reduced and was acceptable for the safety factor defined in DNVGL-OS-E301. This proposed approach of applying a TLCD is a practical tool for designing the components of a floating breakwater more efficiently.Associação Brasileira de Ciências Mecânicas2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700509Latin American Journal of Solids and Structures v.16 n.7 2019reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78255692info:eu-repo/semantics/openAccessShahrabi,MostafaBargi,Khosroweng2019-08-19T00:00:00Zoai:scielo:S1679-78252019000700509Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2019-08-19T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
title Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
spellingShingle Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
Shahrabi,Mostafa
floating breakwater (FB)
tuned liquid column damper (TLCD)
fatigue assessment
mooring system
S-N curves
structural control
title_short Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
title_full Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
title_fullStr Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
title_full_unstemmed Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
title_sort Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper
author Shahrabi,Mostafa
author_facet Shahrabi,Mostafa
Bargi,Khosrow
author_role author
author2 Bargi,Khosrow
author2_role author
dc.contributor.author.fl_str_mv Shahrabi,Mostafa
Bargi,Khosrow
dc.subject.por.fl_str_mv floating breakwater (FB)
tuned liquid column damper (TLCD)
fatigue assessment
mooring system
S-N curves
structural control
topic floating breakwater (FB)
tuned liquid column damper (TLCD)
fatigue assessment
mooring system
S-N curves
structural control
description Abstract Safety is a key design criterion for floating structures. A high rate of mooring accidents has been reported over the past decades. Preventing mooring line failure is a key design objective for floating breakwater systems. The mooring system comprises sets of mooring lines anchored to the seabed. These components are exposed to highly cyclic nonlinear load fluctuations induced by an irregular wave climate during their service life. DNVGL-OS-E301 classifies the mooring lines for floating breakwaters as long-term elements that should be evaluated according to the fatigue limit state. Fatigue of mooring lines needs to be monitored and evaluated to warrant the station keeping and integrity of overall system. Applying an additional control device to a floating breakwater mitigates the structural response and hence mobilized tension in mooring system. The focus of present study was to examine the effect of an additional control device on fatigue life of mooring lines for floating breakwaters. To evaluate the effect of a control device on the fatigue behavior of mooring lines, a floating breakwater was simulated with a tuned liquid column damper (TLCD) attached. A time-dependent approach based on S-N curves in conjunction with the Palmgren-Miner rule was employed to evaluate the mooring line fatigue. This paper presents a further parametric study focused on the effect of TLCD on fairlead point displacement, mobilized tension, damage rate, and fatigue life of mooring lines. The results showed that TLCD increased the fatigue life of mooring line and thus dramatically decreased the likelihood of the mooring system being damaged by fatigue. This would reduce the maintenance costs and increase the lifetime and operational safety of floating breakwater. In addition, the presented case study showed that failure probability of mooring lines against fatigue damage was also reduced and was acceptable for the safety factor defined in DNVGL-OS-E301. This proposed approach of applying a TLCD is a practical tool for designing the components of a floating breakwater more efficiently.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700509
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700509
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78255692
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.16 n.7 2019
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302890086760448