Kinetics of oxyfuel gas cutting of steels

Detalhes bibliográficos
Autor(a) principal: Adedayo,Adeleke Victor
Data de Publicação: 2011
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009
Resumo: Oxyacetylene flame cutting is a relevant and widespread industrial process. The basic principles of the process lie in rapid high-temperature oxidation of the cut metal. The kinetics of the process depends, among other things, on the composition of the cut metal, the activity of the reactants. In this present work, a report of the role of carbon on the kinetics of the process is made; effects of the activities of oxyfuel gases on the flame cutting process is also elucidated. This was done by investigation of the effects of carbon content and the cutting pressures on the cutting rates of steels by the oxyacetylene cutting process. Six 10mm steel rods of different wt% C were flame cut using different acetylene and oxygen pressures. The composition of the steel rods used ranged from 0.16 wt% C to 0.33 wt% C, the acetylene pressures used ranged from 3.45 x 10-2 N.m-2 to 5.52 x 10-2N.m-2, while oxygen pressure ranged from 2.76 x 10-1N.m-2 to 3.17 x 10-1 N.m-2. The result shows that the cutting rates decreased with carbon content of the steel as a result of reduction of iron oxide during decarburization reactions; however, cutting rates increased with the oxyfuel pressures as a result of increased activity of oxyfuel gases with increased pressure.
id ABCM-2_1612a4340a6387ce15af8ff8acb6b1a9
oai_identifier_str oai:scielo:S1678-58782011000200009
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Kinetics of oxyfuel gas cutting of steelsflame cuttingoxyfueloxyacetylenesteel oxidationdecarburizationOxyacetylene flame cutting is a relevant and widespread industrial process. The basic principles of the process lie in rapid high-temperature oxidation of the cut metal. The kinetics of the process depends, among other things, on the composition of the cut metal, the activity of the reactants. In this present work, a report of the role of carbon on the kinetics of the process is made; effects of the activities of oxyfuel gases on the flame cutting process is also elucidated. This was done by investigation of the effects of carbon content and the cutting pressures on the cutting rates of steels by the oxyacetylene cutting process. Six 10mm steel rods of different wt% C were flame cut using different acetylene and oxygen pressures. The composition of the steel rods used ranged from 0.16 wt% C to 0.33 wt% C, the acetylene pressures used ranged from 3.45 x 10-2 N.m-2 to 5.52 x 10-2N.m-2, while oxygen pressure ranged from 2.76 x 10-1N.m-2 to 3.17 x 10-1 N.m-2. The result shows that the cutting rates decreased with carbon content of the steel as a result of reduction of iron oxide during decarburization reactions; however, cutting rates increased with the oxyfuel pressures as a result of increased activity of oxyfuel gases with increased pressure.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2011-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.2 2011reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782011000200009info:eu-repo/semantics/openAccessAdedayo,Adeleke Victoreng2011-08-31T00:00:00Zoai:scielo:S1678-58782011000200009Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2011-08-31T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Kinetics of oxyfuel gas cutting of steels
title Kinetics of oxyfuel gas cutting of steels
spellingShingle Kinetics of oxyfuel gas cutting of steels
Adedayo,Adeleke Victor
flame cutting
oxyfuel
oxyacetylene
steel oxidation
decarburization
title_short Kinetics of oxyfuel gas cutting of steels
title_full Kinetics of oxyfuel gas cutting of steels
title_fullStr Kinetics of oxyfuel gas cutting of steels
title_full_unstemmed Kinetics of oxyfuel gas cutting of steels
title_sort Kinetics of oxyfuel gas cutting of steels
author Adedayo,Adeleke Victor
author_facet Adedayo,Adeleke Victor
author_role author
dc.contributor.author.fl_str_mv Adedayo,Adeleke Victor
dc.subject.por.fl_str_mv flame cutting
oxyfuel
oxyacetylene
steel oxidation
decarburization
topic flame cutting
oxyfuel
oxyacetylene
steel oxidation
decarburization
description Oxyacetylene flame cutting is a relevant and widespread industrial process. The basic principles of the process lie in rapid high-temperature oxidation of the cut metal. The kinetics of the process depends, among other things, on the composition of the cut metal, the activity of the reactants. In this present work, a report of the role of carbon on the kinetics of the process is made; effects of the activities of oxyfuel gases on the flame cutting process is also elucidated. This was done by investigation of the effects of carbon content and the cutting pressures on the cutting rates of steels by the oxyacetylene cutting process. Six 10mm steel rods of different wt% C were flame cut using different acetylene and oxygen pressures. The composition of the steel rods used ranged from 0.16 wt% C to 0.33 wt% C, the acetylene pressures used ranged from 3.45 x 10-2 N.m-2 to 5.52 x 10-2N.m-2, while oxygen pressure ranged from 2.76 x 10-1N.m-2 to 3.17 x 10-1 N.m-2. The result shows that the cutting rates decreased with carbon content of the steel as a result of reduction of iron oxide during decarburization reactions; however, cutting rates increased with the oxyfuel pressures as a result of increased activity of oxyfuel gases with increased pressure.
publishDate 2011
dc.date.none.fl_str_mv 2011-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782011000200009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.2 2011
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681892323328