Kinetics of oxyfuel gas cutting of steels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009 |
Resumo: | Oxyacetylene flame cutting is a relevant and widespread industrial process. The basic principles of the process lie in rapid high-temperature oxidation of the cut metal. The kinetics of the process depends, among other things, on the composition of the cut metal, the activity of the reactants. In this present work, a report of the role of carbon on the kinetics of the process is made; effects of the activities of oxyfuel gases on the flame cutting process is also elucidated. This was done by investigation of the effects of carbon content and the cutting pressures on the cutting rates of steels by the oxyacetylene cutting process. Six 10mm steel rods of different wt% C were flame cut using different acetylene and oxygen pressures. The composition of the steel rods used ranged from 0.16 wt% C to 0.33 wt% C, the acetylene pressures used ranged from 3.45 x 10-2 N.m-2 to 5.52 x 10-2N.m-2, while oxygen pressure ranged from 2.76 x 10-1N.m-2 to 3.17 x 10-1 N.m-2. The result shows that the cutting rates decreased with carbon content of the steel as a result of reduction of iron oxide during decarburization reactions; however, cutting rates increased with the oxyfuel pressures as a result of increased activity of oxyfuel gases with increased pressure. |
id |
ABCM-2_1612a4340a6387ce15af8ff8acb6b1a9 |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782011000200009 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Kinetics of oxyfuel gas cutting of steelsflame cuttingoxyfueloxyacetylenesteel oxidationdecarburizationOxyacetylene flame cutting is a relevant and widespread industrial process. The basic principles of the process lie in rapid high-temperature oxidation of the cut metal. The kinetics of the process depends, among other things, on the composition of the cut metal, the activity of the reactants. In this present work, a report of the role of carbon on the kinetics of the process is made; effects of the activities of oxyfuel gases on the flame cutting process is also elucidated. This was done by investigation of the effects of carbon content and the cutting pressures on the cutting rates of steels by the oxyacetylene cutting process. Six 10mm steel rods of different wt% C were flame cut using different acetylene and oxygen pressures. The composition of the steel rods used ranged from 0.16 wt% C to 0.33 wt% C, the acetylene pressures used ranged from 3.45 x 10-2 N.m-2 to 5.52 x 10-2N.m-2, while oxygen pressure ranged from 2.76 x 10-1N.m-2 to 3.17 x 10-1 N.m-2. The result shows that the cutting rates decreased with carbon content of the steel as a result of reduction of iron oxide during decarburization reactions; however, cutting rates increased with the oxyfuel pressures as a result of increased activity of oxyfuel gases with increased pressure.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2011-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.2 2011reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782011000200009info:eu-repo/semantics/openAccessAdedayo,Adeleke Victoreng2011-08-31T00:00:00Zoai:scielo:S1678-58782011000200009Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2011-08-31T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Kinetics of oxyfuel gas cutting of steels |
title |
Kinetics of oxyfuel gas cutting of steels |
spellingShingle |
Kinetics of oxyfuel gas cutting of steels Adedayo,Adeleke Victor flame cutting oxyfuel oxyacetylene steel oxidation decarburization |
title_short |
Kinetics of oxyfuel gas cutting of steels |
title_full |
Kinetics of oxyfuel gas cutting of steels |
title_fullStr |
Kinetics of oxyfuel gas cutting of steels |
title_full_unstemmed |
Kinetics of oxyfuel gas cutting of steels |
title_sort |
Kinetics of oxyfuel gas cutting of steels |
author |
Adedayo,Adeleke Victor |
author_facet |
Adedayo,Adeleke Victor |
author_role |
author |
dc.contributor.author.fl_str_mv |
Adedayo,Adeleke Victor |
dc.subject.por.fl_str_mv |
flame cutting oxyfuel oxyacetylene steel oxidation decarburization |
topic |
flame cutting oxyfuel oxyacetylene steel oxidation decarburization |
description |
Oxyacetylene flame cutting is a relevant and widespread industrial process. The basic principles of the process lie in rapid high-temperature oxidation of the cut metal. The kinetics of the process depends, among other things, on the composition of the cut metal, the activity of the reactants. In this present work, a report of the role of carbon on the kinetics of the process is made; effects of the activities of oxyfuel gases on the flame cutting process is also elucidated. This was done by investigation of the effects of carbon content and the cutting pressures on the cutting rates of steels by the oxyacetylene cutting process. Six 10mm steel rods of different wt% C were flame cut using different acetylene and oxygen pressures. The composition of the steel rods used ranged from 0.16 wt% C to 0.33 wt% C, the acetylene pressures used ranged from 3.45 x 10-2 N.m-2 to 5.52 x 10-2N.m-2, while oxygen pressure ranged from 2.76 x 10-1N.m-2 to 3.17 x 10-1 N.m-2. The result shows that the cutting rates decreased with carbon content of the steel as a result of reduction of iron oxide during decarburization reactions; however, cutting rates increased with the oxyfuel pressures as a result of increased activity of oxyfuel gases with increased pressure. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000200009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782011000200009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.2 2011 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734681892323328 |