Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement .
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3150/tde-10082021-144303/ |
Resumo: | On conventional offshore petroleum platforms, the combined heat and power production (CHP) currently depends on simple cycle gas turbine systems (SCGT) that operate at a lower efficiency and increased environmental impact compared to modern onshore thermoelectric plants. Additionally, the reduced space and the limited weight budget in offshore platforms have discouraged operators from integrating more efficient but also bulkier cogeneration cycles (e.g. combined cycles). In spite of these circumstances, more stringent environmental regulations of offshore oil and gas activities have progressively pressured companies to lean towards the integration of advanced cogeneration systems together with either customary or unconventional carbon capture approaches to maintain both higher power generation efficiencies and reduced CO2 emissions. Accordingly, the performance of a conventional offshore petroleum production platform (without a carbon capture system) is assessed and compared to other configurations based on either an amines-based chemical absorption system or oxyfuel combustion concepts (e.g. S-Graz and Allam Cycles) for CO2 capture purposes. Since the original power and heat requirements of the processing platform must be satisfied, an energy integration analysis is performed to determine the waste heat recovery opportunities, whereas the exergy method helps quantifying the most critical components that lead to the largest irreversibility and identifying the thermodynamic potential for enhanced cogeneration plants. As a result, the oxyfuel gas turbines cogeneration based plants, the Allam and the S-Graz cycles, present competitive exergy performances such as power exergy efficiencies of 42.63% and 27.10% compared to 25.41% and 23.59% exhibited by SCGT and post-combustion systems, respectively. Furthermore, those advanced systems allow for significant cutting down of atmospheric CO2 emissions while maintaining similar unit exergy costs and higher rates of heat recovery as shown by the pinch and exergy analysis. |
id |
USP_bbf3d072cf39ef2c0f580cf6f64b5979 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10082021-144303 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement .Estudo termodinâmico de turbinas a gás de oxi-combustão: da produção de O2 ao abatimento de CO2.Carbon captureCarbonoEstruturas offshoreOffshore platformsOxi-combustãoOxyfuelOn conventional offshore petroleum platforms, the combined heat and power production (CHP) currently depends on simple cycle gas turbine systems (SCGT) that operate at a lower efficiency and increased environmental impact compared to modern onshore thermoelectric plants. Additionally, the reduced space and the limited weight budget in offshore platforms have discouraged operators from integrating more efficient but also bulkier cogeneration cycles (e.g. combined cycles). In spite of these circumstances, more stringent environmental regulations of offshore oil and gas activities have progressively pressured companies to lean towards the integration of advanced cogeneration systems together with either customary or unconventional carbon capture approaches to maintain both higher power generation efficiencies and reduced CO2 emissions. Accordingly, the performance of a conventional offshore petroleum production platform (without a carbon capture system) is assessed and compared to other configurations based on either an amines-based chemical absorption system or oxyfuel combustion concepts (e.g. S-Graz and Allam Cycles) for CO2 capture purposes. Since the original power and heat requirements of the processing platform must be satisfied, an energy integration analysis is performed to determine the waste heat recovery opportunities, whereas the exergy method helps quantifying the most critical components that lead to the largest irreversibility and identifying the thermodynamic potential for enhanced cogeneration plants. As a result, the oxyfuel gas turbines cogeneration based plants, the Allam and the S-Graz cycles, present competitive exergy performances such as power exergy efficiencies of 42.63% and 27.10% compared to 25.41% and 23.59% exhibited by SCGT and post-combustion systems, respectively. Furthermore, those advanced systems allow for significant cutting down of atmospheric CO2 emissions while maintaining similar unit exergy costs and higher rates of heat recovery as shown by the pinch and exergy analysis.Em plataformas de petróleo offshore convencionais, a produção combinada de calor e potência depende atualmente de sistemas de turbina a gás de ciclo aberto que operam com menor eficiência e maior impacto ambiental em comparação com as modernas termelétricas terrestres. Além disso, o espaço reduzido e peso limitado nessas plataformas desencorajam os operadores de fazer uso de ciclos de cogeração mais eficientes, mas também maiores (por exemplo, ciclos combinados). Apesar disso, regulamentações ambientais mais rigorosas das atividades de petróleo e gás offshore provocaram renovado interesse em sistemas de cogeração avançados e técnicas de captura de carbono. Sejam essas técnicas convencionais ou não, sua integração a sistemas avançados de cogeração buscam manter as eficiências de geração de energia altas à medida que reduz emissões de CO2. Em conformidade com esses objetivos, o desempenho de uma plataforma convencional de produção de petróleo offshore (sem sistema de captura de carbono) é avaliado e comparado a outras configurações baseadas em um sistema de absorção química através do uso de aminas ou conceitos de oxi-combustão (por exemplo, ciclos S-Graz e Allam) para fins de captura de CO2. Como os requisitos originais de energia e calor da plataforma de processamento devem ser satisfeitos, uma análise de integração energética é realizada para determinar as oportunidades de recuperação de calor residual. Por outro lado, uma análise exergética ajuda a quantificar os componentes mais críticos que levam a maior irreversibilidade. Como resultado, as plantas com sistema oxi-combustão, com ciclos Allam e SGraz, apresentam desempenho exergético competitivo, com eficiência exergética de 42,63% e 27,10% em comparação com 25,41% e 23,59% exibidas pelos sistemas de ciclo aberto e pós-combustão, respectivamente. Ademais, esses sistemas avançados permitem reduzir significativamente as emissões atmosféricas de CO2, mantendo custos de exergia unitários similares e taxas mais altas de recuperação de calor, como mostrado pela análise pinch e exergética.Biblioteca Digitais de Teses e Dissertações da USPOliveira Junior, Silvio deSilva, Fernanda Cristina Nascimento2021-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3150/tde-10082021-144303/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:03:42Zoai:teses.usp.br:tde-10082021-144303Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:03:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . Estudo termodinâmico de turbinas a gás de oxi-combustão: da produção de O2 ao abatimento de CO2. |
title |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . |
spellingShingle |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . Silva, Fernanda Cristina Nascimento Carbon capture Carbono Estruturas offshore Offshore platforms Oxi-combustão Oxyfuel |
title_short |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . |
title_full |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . |
title_fullStr |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . |
title_full_unstemmed |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . |
title_sort |
Thermodynamic study of oxyfuel gas turbines: from O2 production to CO2 abatement . |
author |
Silva, Fernanda Cristina Nascimento |
author_facet |
Silva, Fernanda Cristina Nascimento |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira Junior, Silvio de |
dc.contributor.author.fl_str_mv |
Silva, Fernanda Cristina Nascimento |
dc.subject.por.fl_str_mv |
Carbon capture Carbono Estruturas offshore Offshore platforms Oxi-combustão Oxyfuel |
topic |
Carbon capture Carbono Estruturas offshore Offshore platforms Oxi-combustão Oxyfuel |
description |
On conventional offshore petroleum platforms, the combined heat and power production (CHP) currently depends on simple cycle gas turbine systems (SCGT) that operate at a lower efficiency and increased environmental impact compared to modern onshore thermoelectric plants. Additionally, the reduced space and the limited weight budget in offshore platforms have discouraged operators from integrating more efficient but also bulkier cogeneration cycles (e.g. combined cycles). In spite of these circumstances, more stringent environmental regulations of offshore oil and gas activities have progressively pressured companies to lean towards the integration of advanced cogeneration systems together with either customary or unconventional carbon capture approaches to maintain both higher power generation efficiencies and reduced CO2 emissions. Accordingly, the performance of a conventional offshore petroleum production platform (without a carbon capture system) is assessed and compared to other configurations based on either an amines-based chemical absorption system or oxyfuel combustion concepts (e.g. S-Graz and Allam Cycles) for CO2 capture purposes. Since the original power and heat requirements of the processing platform must be satisfied, an energy integration analysis is performed to determine the waste heat recovery opportunities, whereas the exergy method helps quantifying the most critical components that lead to the largest irreversibility and identifying the thermodynamic potential for enhanced cogeneration plants. As a result, the oxyfuel gas turbines cogeneration based plants, the Allam and the S-Graz cycles, present competitive exergy performances such as power exergy efficiencies of 42.63% and 27.10% compared to 25.41% and 23.59% exhibited by SCGT and post-combustion systems, respectively. Furthermore, those advanced systems allow for significant cutting down of atmospheric CO2 emissions while maintaining similar unit exergy costs and higher rates of heat recovery as shown by the pinch and exergy analysis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3150/tde-10082021-144303/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3150/tde-10082021-144303/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256500489158656 |