Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms

Detalhes bibliográficos
Autor(a) principal: Thiagarajan,C.
Data de Publicação: 2012
Outros Autores: Sivaramakrishnan,R., Somasundaram,S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000100005
Resumo: The Al/SiC composites have received more commercial attention than other kinds of Metal Matrix Composites (MMCs) due to their high performance. However, a continuing problem with MMCs is that they are difficult to machine, due to the hardness and abrasive nature of the SiC particles. Grinding is often the method of choice for machining Al/SiC composites to acquire high dimensional accuracy and surface finish in large scale production. Based on the full factorial design (3(4)), a total of 81 experiments, each having a combination of different levels of variables, are carried out to study the effect of grinding parameters such as wheel velocity, work piece velocity, feed and depth of cut on the responses such as tangential grinding force, roughness and grinding temperature. Modeling and optimization place a vital role in controlling any process for improved product quality, high productivity and low cost. In the present work, experimental results are used to calculate the analysis of variance (ANOVA) which explains the significance of the parameters on the responses. Based on the results of ANOVA, a mathematical model is formulated using multiple regression method. A genetic algorithm (GA) based optimization procedure has been developed to optimize the grinding parameters for maximum material removal by imposing constraints on roughness. This methodology would be useful for identifying the optimum grinding parameters in order to achieve the required material removal rate (MRR).
id ABCM-2_33f97305a6012843284c2bafe0783798
oai_identifier_str oai:scielo:S1678-58782012000100005
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithmsmetal matrix compositescylindrical grindingmodeling and optimizationgenetic algorithmThe Al/SiC composites have received more commercial attention than other kinds of Metal Matrix Composites (MMCs) due to their high performance. However, a continuing problem with MMCs is that they are difficult to machine, due to the hardness and abrasive nature of the SiC particles. Grinding is often the method of choice for machining Al/SiC composites to acquire high dimensional accuracy and surface finish in large scale production. Based on the full factorial design (3(4)), a total of 81 experiments, each having a combination of different levels of variables, are carried out to study the effect of grinding parameters such as wheel velocity, work piece velocity, feed and depth of cut on the responses such as tangential grinding force, roughness and grinding temperature. Modeling and optimization place a vital role in controlling any process for improved product quality, high productivity and low cost. In the present work, experimental results are used to calculate the analysis of variance (ANOVA) which explains the significance of the parameters on the responses. Based on the results of ANOVA, a mathematical model is formulated using multiple regression method. A genetic algorithm (GA) based optimization procedure has been developed to optimize the grinding parameters for maximum material removal by imposing constraints on roughness. This methodology would be useful for identifying the optimum grinding parameters in order to achieve the required material removal rate (MRR).Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2012-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000100005Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.1 2012reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782012000100005info:eu-repo/semantics/openAccessThiagarajan,C.Sivaramakrishnan,R.Somasundaram,S.eng2012-04-10T00:00:00Zoai:scielo:S1678-58782012000100005Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2012-04-10T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
title Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
spellingShingle Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
Thiagarajan,C.
metal matrix composites
cylindrical grinding
modeling and optimization
genetic algorithm
title_short Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
title_full Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
title_fullStr Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
title_full_unstemmed Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
title_sort Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms
author Thiagarajan,C.
author_facet Thiagarajan,C.
Sivaramakrishnan,R.
Somasundaram,S.
author_role author
author2 Sivaramakrishnan,R.
Somasundaram,S.
author2_role author
author
dc.contributor.author.fl_str_mv Thiagarajan,C.
Sivaramakrishnan,R.
Somasundaram,S.
dc.subject.por.fl_str_mv metal matrix composites
cylindrical grinding
modeling and optimization
genetic algorithm
topic metal matrix composites
cylindrical grinding
modeling and optimization
genetic algorithm
description The Al/SiC composites have received more commercial attention than other kinds of Metal Matrix Composites (MMCs) due to their high performance. However, a continuing problem with MMCs is that they are difficult to machine, due to the hardness and abrasive nature of the SiC particles. Grinding is often the method of choice for machining Al/SiC composites to acquire high dimensional accuracy and surface finish in large scale production. Based on the full factorial design (3(4)), a total of 81 experiments, each having a combination of different levels of variables, are carried out to study the effect of grinding parameters such as wheel velocity, work piece velocity, feed and depth of cut on the responses such as tangential grinding force, roughness and grinding temperature. Modeling and optimization place a vital role in controlling any process for improved product quality, high productivity and low cost. In the present work, experimental results are used to calculate the analysis of variance (ANOVA) which explains the significance of the parameters on the responses. Based on the results of ANOVA, a mathematical model is formulated using multiple regression method. A genetic algorithm (GA) based optimization procedure has been developed to optimize the grinding parameters for maximum material removal by imposing constraints on roughness. This methodology would be useful for identifying the optimum grinding parameters in order to achieve the required material removal rate (MRR).
publishDate 2012
dc.date.none.fl_str_mv 2012-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000100005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000100005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782012000100005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.1 2012
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681959432192