An optimal linear control design for nonlinear systems

Detalhes bibliográficos
Autor(a) principal: Rafikov,Marat
Data de Publicação: 2008
Outros Autores: Balthazar,José Manoel, Tusset,Ângelo Marcelo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002
Resumo: This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method.
id ABCM-2_4c1358b0d416fd2fabaa5bc1aa3fc49e
oai_identifier_str oai:scielo:S1678-58782008000400002
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling An optimal linear control design for nonlinear systemsoptimal controlnonlinear systemduffing oscillatoractive suspension systemchaotic attractorThis paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2008-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002Journal of the Brazilian Society of Mechanical Sciences and Engineering v.30 n.4 2008reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782008000400002info:eu-repo/semantics/openAccessRafikov,MaratBalthazar,José ManoelTusset,Ângelo Marceloeng2009-01-30T00:00:00Zoai:scielo:S1678-58782008000400002Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2009-01-30T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv An optimal linear control design for nonlinear systems
title An optimal linear control design for nonlinear systems
spellingShingle An optimal linear control design for nonlinear systems
Rafikov,Marat
optimal control
nonlinear system
duffing oscillator
active suspension system
chaotic attractor
title_short An optimal linear control design for nonlinear systems
title_full An optimal linear control design for nonlinear systems
title_fullStr An optimal linear control design for nonlinear systems
title_full_unstemmed An optimal linear control design for nonlinear systems
title_sort An optimal linear control design for nonlinear systems
author Rafikov,Marat
author_facet Rafikov,Marat
Balthazar,José Manoel
Tusset,Ângelo Marcelo
author_role author
author2 Balthazar,José Manoel
Tusset,Ângelo Marcelo
author2_role author
author
dc.contributor.author.fl_str_mv Rafikov,Marat
Balthazar,José Manoel
Tusset,Ângelo Marcelo
dc.subject.por.fl_str_mv optimal control
nonlinear system
duffing oscillator
active suspension system
chaotic attractor
topic optimal control
nonlinear system
duffing oscillator
active suspension system
chaotic attractor
description This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782008000400002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.30 n.4 2008
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681381666816