An optimal linear control design for nonlinear systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002 |
Resumo: | This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method. |
id |
ABCM-2_4c1358b0d416fd2fabaa5bc1aa3fc49e |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782008000400002 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
An optimal linear control design for nonlinear systemsoptimal controlnonlinear systemduffing oscillatoractive suspension systemchaotic attractorThis paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2008-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002Journal of the Brazilian Society of Mechanical Sciences and Engineering v.30 n.4 2008reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782008000400002info:eu-repo/semantics/openAccessRafikov,MaratBalthazar,José ManoelTusset,Ângelo Marceloeng2009-01-30T00:00:00Zoai:scielo:S1678-58782008000400002Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2009-01-30T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
An optimal linear control design for nonlinear systems |
title |
An optimal linear control design for nonlinear systems |
spellingShingle |
An optimal linear control design for nonlinear systems Rafikov,Marat optimal control nonlinear system duffing oscillator active suspension system chaotic attractor |
title_short |
An optimal linear control design for nonlinear systems |
title_full |
An optimal linear control design for nonlinear systems |
title_fullStr |
An optimal linear control design for nonlinear systems |
title_full_unstemmed |
An optimal linear control design for nonlinear systems |
title_sort |
An optimal linear control design for nonlinear systems |
author |
Rafikov,Marat |
author_facet |
Rafikov,Marat Balthazar,José Manoel Tusset,Ângelo Marcelo |
author_role |
author |
author2 |
Balthazar,José Manoel Tusset,Ângelo Marcelo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rafikov,Marat Balthazar,José Manoel Tusset,Ângelo Marcelo |
dc.subject.por.fl_str_mv |
optimal control nonlinear system duffing oscillator active suspension system chaotic attractor |
topic |
optimal control nonlinear system duffing oscillator active suspension system chaotic attractor |
description |
This paper studies the linear feedback control strategies for nonlinear systems. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations the Duffing oscillator and the nonlinear automotive active suspension system are provided to show the effectiveness of this method. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000400002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782008000400002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.30 n.4 2008 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734681381666816 |