Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element

Detalhes bibliográficos
Autor(a) principal: Isoldi,Liércio André
Data de Publicação: 2008
Outros Autores: Awruch,Armando Miguel, Teixeira,Paulo Roberto de F., Morsch,Inácio B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000100012
Resumo: Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterative-incremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes.
id ABCM-2_e32230ed041e651bbd08c16f97bfd42c
oai_identifier_str oai:scielo:S1678-58782008000100012
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite elementgeometrically nonlinear analysislaminate compositestatic and dynamic analysis of shellsGeometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterative-incremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2008-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000100012Journal of the Brazilian Society of Mechanical Sciences and Engineering v.30 n.1 2008reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782008000100012info:eu-repo/semantics/openAccessIsoldi,Liércio AndréAwruch,Armando MiguelTeixeira,Paulo Roberto de F.Morsch,Inácio B.eng2008-04-25T00:00:00Zoai:scielo:S1678-58782008000100012Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2008-04-25T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
spellingShingle Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
Isoldi,Liércio André
geometrically nonlinear analysis
laminate composite
static and dynamic analysis of shells
title_short Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_full Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_fullStr Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_full_unstemmed Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_sort Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
author Isoldi,Liércio André
author_facet Isoldi,Liércio André
Awruch,Armando Miguel
Teixeira,Paulo Roberto de F.
Morsch,Inácio B.
author_role author
author2 Awruch,Armando Miguel
Teixeira,Paulo Roberto de F.
Morsch,Inácio B.
author2_role author
author
author
dc.contributor.author.fl_str_mv Isoldi,Liércio André
Awruch,Armando Miguel
Teixeira,Paulo Roberto de F.
Morsch,Inácio B.
dc.subject.por.fl_str_mv geometrically nonlinear analysis
laminate composite
static and dynamic analysis of shells
topic geometrically nonlinear analysis
laminate composite
static and dynamic analysis of shells
description Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterative-incremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes.
publishDate 2008
dc.date.none.fl_str_mv 2008-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000100012
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782008000100012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782008000100012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.30 n.1 2008
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681012568064