Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element

Detalhes bibliográficos
Autor(a) principal: Isoldi, Liércio André
Data de Publicação: 2008
Outros Autores: Awruch, Armando Miguel, Teixeira, Paulo Roberto de Freitas, Morsch, Inacio Benvegnu
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/75799
Resumo: Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterativeincremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes.
id UFRGS-2_af0603b0b74b3a0c783485c0d9bdcfc1
oai_identifier_str oai:www.lume.ufrgs.br:10183/75799
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Isoldi, Liércio AndréAwruch, Armando MiguelTeixeira, Paulo Roberto de FreitasMorsch, Inacio Benvegnu2013-07-11T02:22:16Z20081806-3691http://hdl.handle.net/10183/75799000653216Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterativeincremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes.application/pdfengJournal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro, RJ. Vol. 30, no. 1 (Jan./Mar. 2008), p. 84-93Elementos finitosCompósitosEstruturas em cascaGeometrically nonlinear analysis,Laminate compositeStatic and dynamic analysis of shellsGeometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite elementinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000653216.pdf000653216.pdfTexto completo (inglês)application/pdf364147http://www.lume.ufrgs.br/bitstream/10183/75799/1/000653216.pdf8fc67e9e918a1bf4a751540055a29ebbMD51TEXT000653216.pdf.txt000653216.pdf.txtExtracted Texttext/plain39736http://www.lume.ufrgs.br/bitstream/10183/75799/2/000653216.pdf.txt86f29e30faabda6f4a7ef4a67018a087MD52THUMBNAIL000653216.pdf.jpg000653216.pdf.jpgGenerated Thumbnailimage/jpeg1869http://www.lume.ufrgs.br/bitstream/10183/75799/3/000653216.pdf.jpg64e8f707e75ed104ff32b2eda7d9578dMD5310183/757992022-04-20 04:50:27.205002oai:www.lume.ufrgs.br:10183/75799Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-04-20T07:50:27Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
spellingShingle Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
Isoldi, Liércio André
Elementos finitos
Compósitos
Estruturas em casca
Geometrically nonlinear analysis,
Laminate composite
Static and dynamic analysis of shells
title_short Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_full Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_fullStr Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_full_unstemmed Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
title_sort Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
author Isoldi, Liércio André
author_facet Isoldi, Liércio André
Awruch, Armando Miguel
Teixeira, Paulo Roberto de Freitas
Morsch, Inacio Benvegnu
author_role author
author2 Awruch, Armando Miguel
Teixeira, Paulo Roberto de Freitas
Morsch, Inacio Benvegnu
author2_role author
author
author
dc.contributor.author.fl_str_mv Isoldi, Liércio André
Awruch, Armando Miguel
Teixeira, Paulo Roberto de Freitas
Morsch, Inacio Benvegnu
dc.subject.por.fl_str_mv Elementos finitos
Compósitos
Estruturas em casca
topic Elementos finitos
Compósitos
Estruturas em casca
Geometrically nonlinear analysis,
Laminate composite
Static and dynamic analysis of shells
dc.subject.eng.fl_str_mv Geometrically nonlinear analysis,
Laminate composite
Static and dynamic analysis of shells
description Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterativeincremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes.
publishDate 2008
dc.date.issued.fl_str_mv 2008
dc.date.accessioned.fl_str_mv 2013-07-11T02:22:16Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/75799
dc.identifier.issn.pt_BR.fl_str_mv 1806-3691
dc.identifier.nrb.pt_BR.fl_str_mv 000653216
identifier_str_mv 1806-3691
000653216
url http://hdl.handle.net/10183/75799
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro, RJ. Vol. 30, no. 1 (Jan./Mar. 2008), p. 84-93
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/75799/1/000653216.pdf
http://www.lume.ufrgs.br/bitstream/10183/75799/2/000653216.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/75799/3/000653216.pdf.jpg
bitstream.checksum.fl_str_mv 8fc67e9e918a1bf4a751540055a29ebb
86f29e30faabda6f4a7ef4a67018a087
64e8f707e75ed104ff32b2eda7d9578d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447499635163136