Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/75799 |
Resumo: | Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterativeincremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes. |
id |
UFRGS-2_af0603b0b74b3a0c783485c0d9bdcfc1 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/75799 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Isoldi, Liércio AndréAwruch, Armando MiguelTeixeira, Paulo Roberto de FreitasMorsch, Inacio Benvegnu2013-07-11T02:22:16Z20081806-3691http://hdl.handle.net/10183/75799000653216Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterativeincremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes.application/pdfengJournal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro, RJ. Vol. 30, no. 1 (Jan./Mar. 2008), p. 84-93Elementos finitosCompósitosEstruturas em cascaGeometrically nonlinear analysis,Laminate compositeStatic and dynamic analysis of shellsGeometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite elementinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000653216.pdf000653216.pdfTexto completo (inglês)application/pdf364147http://www.lume.ufrgs.br/bitstream/10183/75799/1/000653216.pdf8fc67e9e918a1bf4a751540055a29ebbMD51TEXT000653216.pdf.txt000653216.pdf.txtExtracted Texttext/plain39736http://www.lume.ufrgs.br/bitstream/10183/75799/2/000653216.pdf.txt86f29e30faabda6f4a7ef4a67018a087MD52THUMBNAIL000653216.pdf.jpg000653216.pdf.jpgGenerated Thumbnailimage/jpeg1869http://www.lume.ufrgs.br/bitstream/10183/75799/3/000653216.pdf.jpg64e8f707e75ed104ff32b2eda7d9578dMD5310183/757992022-04-20 04:50:27.205002oai:www.lume.ufrgs.br:10183/75799Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-04-20T07:50:27Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element |
title |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element |
spellingShingle |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element Isoldi, Liércio André Elementos finitos Compósitos Estruturas em casca Geometrically nonlinear analysis, Laminate composite Static and dynamic analysis of shells |
title_short |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element |
title_full |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element |
title_fullStr |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element |
title_full_unstemmed |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element |
title_sort |
Geometrically nonlinear static and dynamic analysis of composite laminates shells with a triangular finite element |
author |
Isoldi, Liércio André |
author_facet |
Isoldi, Liércio André Awruch, Armando Miguel Teixeira, Paulo Roberto de Freitas Morsch, Inacio Benvegnu |
author_role |
author |
author2 |
Awruch, Armando Miguel Teixeira, Paulo Roberto de Freitas Morsch, Inacio Benvegnu |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Isoldi, Liércio André Awruch, Armando Miguel Teixeira, Paulo Roberto de Freitas Morsch, Inacio Benvegnu |
dc.subject.por.fl_str_mv |
Elementos finitos Compósitos Estruturas em casca |
topic |
Elementos finitos Compósitos Estruturas em casca Geometrically nonlinear analysis, Laminate composite Static and dynamic analysis of shells |
dc.subject.eng.fl_str_mv |
Geometrically nonlinear analysis, Laminate composite Static and dynamic analysis of shells |
description |
Geometrically nonlinear static and dynamic behaviour of laminate composite shells are analyzed in this work using the Finite Element Method (FEM). Triangular elements with three nodes and six degrees of freedom per node (three displacement and three rotation components) are used. For static analysis the nonlinear equilibrium equations are solved using the Generalized Displacement Control Method (GDCM) while the dynamic solution is performed using the classical Newmark Method with an Updated Lagrangean Formulation (ULF). The system of equations is solved using the Gradient Cojugate Method (GCM) and in nonlinear cases with finite rotations and displacements an iterativeincremental scheme is employed. Numerical examples are presented and compared with results obtained by other authors with different kind of elements and different schemes. |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008 |
dc.date.accessioned.fl_str_mv |
2013-07-11T02:22:16Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/75799 |
dc.identifier.issn.pt_BR.fl_str_mv |
1806-3691 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000653216 |
identifier_str_mv |
1806-3691 000653216 |
url |
http://hdl.handle.net/10183/75799 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro, RJ. Vol. 30, no. 1 (Jan./Mar. 2008), p. 84-93 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/75799/1/000653216.pdf http://www.lume.ufrgs.br/bitstream/10183/75799/2/000653216.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/75799/3/000653216.pdf.jpg |
bitstream.checksum.fl_str_mv |
8fc67e9e918a1bf4a751540055a29ebb 86f29e30faabda6f4a7ef4a67018a087 64e8f707e75ed104ff32b2eda7d9578d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447499635163136 |