Multiple phase silicon in submicrometer chips removed by diamond turning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782005000400013 |
Resumo: | Continuous chips removed by single point diamond turning of single crystal silicon have been investigated by means of Scanning Electron Microscopy/Transmission Electron Microscopy and micro-Raman Spectroscopy. Three different chip structures were probed with the use of electron diffraction pattern: (i) totally amorphous lamellar structure, (ii) amorphous structure with remnant crystalline material and, (iii) partially amorphous together with amorphous with remnant crystalline material. Furthermore, micro-Raman spectroscopy from the chips left in the cutting tool rake face showed different silicon phases. We have found, from a detailed analysis of the debris, five different structural phases of silicon in the same debris. It is proposed that material removal mechanisms may change along the cutting edge from shearing (yielding lamellar structures) to extrusion. Shearing results from structural changes related to phase transformation induced by pressure and shear deformation. Extrusion, yielding crystalline structures in the chips, may be attributed to a pressure drop (due to an increase in the contact area) from the tool tip towards the region of the cutting edge where brittle-to-ductile transition occurs. From this region upwards, pressure(stress) would be insufficient to trigger phase transformation and therefore amorphous phase would not form integrally along the chip width. |
id |
ABCM-2_e9e84ee4c7da4cad34a341ff18e3193e |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782005000400013 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Multiple phase silicon in submicrometer chips removed by diamond turningSilicondiamond turningmaterial removal mechanismphase transformationContinuous chips removed by single point diamond turning of single crystal silicon have been investigated by means of Scanning Electron Microscopy/Transmission Electron Microscopy and micro-Raman Spectroscopy. Three different chip structures were probed with the use of electron diffraction pattern: (i) totally amorphous lamellar structure, (ii) amorphous structure with remnant crystalline material and, (iii) partially amorphous together with amorphous with remnant crystalline material. Furthermore, micro-Raman spectroscopy from the chips left in the cutting tool rake face showed different silicon phases. We have found, from a detailed analysis of the debris, five different structural phases of silicon in the same debris. It is proposed that material removal mechanisms may change along the cutting edge from shearing (yielding lamellar structures) to extrusion. Shearing results from structural changes related to phase transformation induced by pressure and shear deformation. Extrusion, yielding crystalline structures in the chips, may be attributed to a pressure drop (due to an increase in the contact area) from the tool tip towards the region of the cutting edge where brittle-to-ductile transition occurs. From this region upwards, pressure(stress) would be insufficient to trigger phase transformation and therefore amorphous phase would not form integrally along the chip width.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2005-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782005000400013Journal of the Brazilian Society of Mechanical Sciences and Engineering v.27 n.4 2005reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782005000400013info:eu-repo/semantics/openAccessJasinevicius,R. G.Porto,A. J. V.Duduch,J. G.Pizani,P. S.Lanciotti Jr.,F.Santos,F. J. doseng2006-01-02T00:00:00Zoai:scielo:S1678-58782005000400013Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2006-01-02T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Multiple phase silicon in submicrometer chips removed by diamond turning |
title |
Multiple phase silicon in submicrometer chips removed by diamond turning |
spellingShingle |
Multiple phase silicon in submicrometer chips removed by diamond turning Jasinevicius,R. G. Silicon diamond turning material removal mechanism phase transformation |
title_short |
Multiple phase silicon in submicrometer chips removed by diamond turning |
title_full |
Multiple phase silicon in submicrometer chips removed by diamond turning |
title_fullStr |
Multiple phase silicon in submicrometer chips removed by diamond turning |
title_full_unstemmed |
Multiple phase silicon in submicrometer chips removed by diamond turning |
title_sort |
Multiple phase silicon in submicrometer chips removed by diamond turning |
author |
Jasinevicius,R. G. |
author_facet |
Jasinevicius,R. G. Porto,A. J. V. Duduch,J. G. Pizani,P. S. Lanciotti Jr.,F. Santos,F. J. dos |
author_role |
author |
author2 |
Porto,A. J. V. Duduch,J. G. Pizani,P. S. Lanciotti Jr.,F. Santos,F. J. dos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Jasinevicius,R. G. Porto,A. J. V. Duduch,J. G. Pizani,P. S. Lanciotti Jr.,F. Santos,F. J. dos |
dc.subject.por.fl_str_mv |
Silicon diamond turning material removal mechanism phase transformation |
topic |
Silicon diamond turning material removal mechanism phase transformation |
description |
Continuous chips removed by single point diamond turning of single crystal silicon have been investigated by means of Scanning Electron Microscopy/Transmission Electron Microscopy and micro-Raman Spectroscopy. Three different chip structures were probed with the use of electron diffraction pattern: (i) totally amorphous lamellar structure, (ii) amorphous structure with remnant crystalline material and, (iii) partially amorphous together with amorphous with remnant crystalline material. Furthermore, micro-Raman spectroscopy from the chips left in the cutting tool rake face showed different silicon phases. We have found, from a detailed analysis of the debris, five different structural phases of silicon in the same debris. It is proposed that material removal mechanisms may change along the cutting edge from shearing (yielding lamellar structures) to extrusion. Shearing results from structural changes related to phase transformation induced by pressure and shear deformation. Extrusion, yielding crystalline structures in the chips, may be attributed to a pressure drop (due to an increase in the contact area) from the tool tip towards the region of the cutting edge where brittle-to-ductile transition occurs. From this region upwards, pressure(stress) would be insufficient to trigger phase transformation and therefore amorphous phase would not form integrally along the chip width. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782005000400013 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782005000400013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782005000400013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.27 n.4 2005 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734680509251584 |