Large eddy simulation of three-dimensional turbulent flows by the finite element method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000200012 |
Resumo: | The main objectives of this work are the formulation, implementation and applications of a numerical algorithm to simulate turbulent, incompressible, isothermal flows. The transient three-dimensional flow is analyzed using an explicit Taylor-Galerkin scheme and the finite element method with hexahedrical eight-node element. Turbulence is simulated using Large Eddy Simulation. For sub-grid scales two models were implemented, the classical Smagorinsky's model and the dynamic eddy viscosity model. For the second filtration, which is necessary in the dynamic model, a new method was developed based on independent finite elements that involve each node in the original mesh. The implemented scheme is efficient and good results with low additional computational cost were obtained. Results for two classical problems, the driven cavity and the backward facing step are presented. Comments about the model applicability for flows with high Reynolds numbers are also presented. |
id |
ABCM-2_ebef48ae15c8eb2c2a8277c234133978 |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782006000200012 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Large eddy simulation of three-dimensional turbulent flows by the finite element methodTurbulencelarge Eddy simulationdynamic modelfinite element methodcomputational fluid dynamicsThe main objectives of this work are the formulation, implementation and applications of a numerical algorithm to simulate turbulent, incompressible, isothermal flows. The transient three-dimensional flow is analyzed using an explicit Taylor-Galerkin scheme and the finite element method with hexahedrical eight-node element. Turbulence is simulated using Large Eddy Simulation. For sub-grid scales two models were implemented, the classical Smagorinsky's model and the dynamic eddy viscosity model. For the second filtration, which is necessary in the dynamic model, a new method was developed based on independent finite elements that involve each node in the original mesh. The implemented scheme is efficient and good results with low additional computational cost were obtained. Results for two classical problems, the driven cavity and the backward facing step are presented. Comments about the model applicability for flows with high Reynolds numbers are also presented.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2006-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000200012Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.2 2006reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782006000200012info:eu-repo/semantics/openAccessPetry,Adriane P.Awruch,Armando M.eng2006-06-26T00:00:00Zoai:scielo:S1678-58782006000200012Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2006-06-26T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Large eddy simulation of three-dimensional turbulent flows by the finite element method |
title |
Large eddy simulation of three-dimensional turbulent flows by the finite element method |
spellingShingle |
Large eddy simulation of three-dimensional turbulent flows by the finite element method Petry,Adriane P. Turbulence large Eddy simulation dynamic model finite element method computational fluid dynamics |
title_short |
Large eddy simulation of three-dimensional turbulent flows by the finite element method |
title_full |
Large eddy simulation of three-dimensional turbulent flows by the finite element method |
title_fullStr |
Large eddy simulation of three-dimensional turbulent flows by the finite element method |
title_full_unstemmed |
Large eddy simulation of three-dimensional turbulent flows by the finite element method |
title_sort |
Large eddy simulation of three-dimensional turbulent flows by the finite element method |
author |
Petry,Adriane P. |
author_facet |
Petry,Adriane P. Awruch,Armando M. |
author_role |
author |
author2 |
Awruch,Armando M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Petry,Adriane P. Awruch,Armando M. |
dc.subject.por.fl_str_mv |
Turbulence large Eddy simulation dynamic model finite element method computational fluid dynamics |
topic |
Turbulence large Eddy simulation dynamic model finite element method computational fluid dynamics |
description |
The main objectives of this work are the formulation, implementation and applications of a numerical algorithm to simulate turbulent, incompressible, isothermal flows. The transient three-dimensional flow is analyzed using an explicit Taylor-Galerkin scheme and the finite element method with hexahedrical eight-node element. Turbulence is simulated using Large Eddy Simulation. For sub-grid scales two models were implemented, the classical Smagorinsky's model and the dynamic eddy viscosity model. For the second filtration, which is necessary in the dynamic model, a new method was developed based on independent finite elements that involve each node in the original mesh. The implemented scheme is efficient and good results with low additional computational cost were obtained. Results for two classical problems, the driven cavity and the backward facing step are presented. Comments about the model applicability for flows with high Reynolds numbers are also presented. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000200012 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000200012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782006000200012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.2 2006 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734680553291776 |