Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process

Detalhes bibliográficos
Autor(a) principal: Anglés-Cano,E.
Data de Publicação: 1997
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1997001100002
Resumo: Lipoprotein Lp(a) is a major and independent genetic risk factor for atherosclerosis and cardiovascular disease. The essential difference between Lp(a) and low density lipoproteins (LDL) is apolipoprotein apo(a), a glycoprotein structurally similar to plasminogen, the precursor of plasmin, the fibrinolytic enzyme. This structural homology endows Lp(a) with the capacity to bind to fibrin and to membrane proteins of endothelial cells and monocytes, and thereby to inhibit plasminogen binding and plasmin generation. The inhibition of plasmin generation and the accumulation of Lp(a) on the surface of fibrin and cell membranes favor fibrin and cholesterol deposition at sites of vascular injury. Moreover, insufficient activation of TGF-ß due to low plasmin activity may result in migration and proliferation of smooth muscle cells into the vascular intima. These mechanisms may constitute the basis of the athero-thrombogenic mode of action of Lp(a). It is currently accepted that this effect of Lp(a) is linked to its concentration in plasma. An inverse relationship between Lp(a) concentration and apo(a) isoform size, which is under genetic control, has been documented. Recently, it has been shown that inhibition of plasminogen binding to fibrin by apo(a) is also inversely associated with isoform size. Specific point mutations may also affect the lysine-binding function of apo(a). These results support the existence of functional heterogeneity in apolipoprotein(a) isoforms and suggest that the predictive value of Lp(a) as a risk factor for vascular occlusive disease would depend on the relative concentration of the isoform with the highest affinity for fibrin
id ABDC-1_57b720ce724e7ebc8a03dd7cf1246ebd
oai_identifier_str oai:scielo:S0100-879X1997001100002
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic processatherosclerosisapolipoprotein(a)thrombosisatheromaplasminogenlipoproteinfibrinfibrinolysisLipoprotein Lp(a) is a major and independent genetic risk factor for atherosclerosis and cardiovascular disease. The essential difference between Lp(a) and low density lipoproteins (LDL) is apolipoprotein apo(a), a glycoprotein structurally similar to plasminogen, the precursor of plasmin, the fibrinolytic enzyme. This structural homology endows Lp(a) with the capacity to bind to fibrin and to membrane proteins of endothelial cells and monocytes, and thereby to inhibit plasminogen binding and plasmin generation. The inhibition of plasmin generation and the accumulation of Lp(a) on the surface of fibrin and cell membranes favor fibrin and cholesterol deposition at sites of vascular injury. Moreover, insufficient activation of TGF-ß due to low plasmin activity may result in migration and proliferation of smooth muscle cells into the vascular intima. These mechanisms may constitute the basis of the athero-thrombogenic mode of action of Lp(a). It is currently accepted that this effect of Lp(a) is linked to its concentration in plasma. An inverse relationship between Lp(a) concentration and apo(a) isoform size, which is under genetic control, has been documented. Recently, it has been shown that inhibition of plasminogen binding to fibrin by apo(a) is also inversely associated with isoform size. Specific point mutations may also affect the lysine-binding function of apo(a). These results support the existence of functional heterogeneity in apolipoprotein(a) isoforms and suggest that the predictive value of Lp(a) as a risk factor for vascular occlusive disease would depend on the relative concentration of the isoform with the highest affinity for fibrinAssociação Brasileira de Divulgação Científica1997-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1997001100002Brazilian Journal of Medical and Biological Research v.30 n.11 1997reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/S0100-879X1997001100002info:eu-repo/semantics/openAccessAnglés-Cano,E.eng1998-10-07T00:00:00Zoai:scielo:S0100-879X1997001100002Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:1998-10-07T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
title Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
spellingShingle Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
Anglés-Cano,E.
atherosclerosis
apolipoprotein(a)
thrombosis
atheroma
plasminogen
lipoprotein
fibrin
fibrinolysis
title_short Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
title_full Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
title_fullStr Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
title_full_unstemmed Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
title_sort Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process
author Anglés-Cano,E.
author_facet Anglés-Cano,E.
author_role author
dc.contributor.author.fl_str_mv Anglés-Cano,E.
dc.subject.por.fl_str_mv atherosclerosis
apolipoprotein(a)
thrombosis
atheroma
plasminogen
lipoprotein
fibrin
fibrinolysis
topic atherosclerosis
apolipoprotein(a)
thrombosis
atheroma
plasminogen
lipoprotein
fibrin
fibrinolysis
description Lipoprotein Lp(a) is a major and independent genetic risk factor for atherosclerosis and cardiovascular disease. The essential difference between Lp(a) and low density lipoproteins (LDL) is apolipoprotein apo(a), a glycoprotein structurally similar to plasminogen, the precursor of plasmin, the fibrinolytic enzyme. This structural homology endows Lp(a) with the capacity to bind to fibrin and to membrane proteins of endothelial cells and monocytes, and thereby to inhibit plasminogen binding and plasmin generation. The inhibition of plasmin generation and the accumulation of Lp(a) on the surface of fibrin and cell membranes favor fibrin and cholesterol deposition at sites of vascular injury. Moreover, insufficient activation of TGF-ß due to low plasmin activity may result in migration and proliferation of smooth muscle cells into the vascular intima. These mechanisms may constitute the basis of the athero-thrombogenic mode of action of Lp(a). It is currently accepted that this effect of Lp(a) is linked to its concentration in plasma. An inverse relationship between Lp(a) concentration and apo(a) isoform size, which is under genetic control, has been documented. Recently, it has been shown that inhibition of plasminogen binding to fibrin by apo(a) is also inversely associated with isoform size. Specific point mutations may also affect the lysine-binding function of apo(a). These results support the existence of functional heterogeneity in apolipoprotein(a) isoforms and suggest that the predictive value of Lp(a) as a risk factor for vascular occlusive disease would depend on the relative concentration of the isoform with the highest affinity for fibrin
publishDate 1997
dc.date.none.fl_str_mv 1997-11-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1997001100002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1997001100002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-879X1997001100002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.30 n.11 1997
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302928850518016