Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2005000600001 |
Resumo: | Apoptosis is the most common phenotype observed when cells die through programmed cell death. The morphologic and biochemical changes that characterize apoptotic cells depend on the activation of a diverse set of genes. Apoptosis is essential for multicellular organisms since their development and homeostasis are dependent on extensive cell renewal. In fact, there is strong evidence for the correlation between the emergence of multicellular organisms and apoptosis during evolution. On the other hand, no obvious advantages can be envisaged for unicellular organisms to carry the complex machinery required for programmed cell death. However, accumulating evidence shows that free-living and parasitic protozoa as well as yeasts display apoptotic markers. This phenomenon has been related to altruistic behavior, when a subpopulation of protozoa or yeasts dies by apoptosis, with clear benefits for the entire population. Recently, phosphatidylserine (PS) exposure and its recognition by a specific receptor (PSR) were implicated in the infectivity of amastigote forms of Leishmania, an obligatory vertebrate intramacrophagic parasite, showing for the first time that unicellular organisms use apoptotic features for the establishment and/or maintenance of infection. Here we focus on PS exposure in the outer leaflet of the plasma membrane - an early hallmark of apoptosis - and how it modulates the inflammatory activity of phagocytic cells. We also discuss the possible mechanisms by which PS exposure can define Leishmania survival inside host cells and the evolutionary implications of apoptosis at the unicellular level. |
id |
ABDC-1_a71c80ec9830f5c00949b5d422aa357c |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2005000600001 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplayApoptosisPhosphatidylserineLeishmaniaPhagocyteApoptosis is the most common phenotype observed when cells die through programmed cell death. The morphologic and biochemical changes that characterize apoptotic cells depend on the activation of a diverse set of genes. Apoptosis is essential for multicellular organisms since their development and homeostasis are dependent on extensive cell renewal. In fact, there is strong evidence for the correlation between the emergence of multicellular organisms and apoptosis during evolution. On the other hand, no obvious advantages can be envisaged for unicellular organisms to carry the complex machinery required for programmed cell death. However, accumulating evidence shows that free-living and parasitic protozoa as well as yeasts display apoptotic markers. This phenomenon has been related to altruistic behavior, when a subpopulation of protozoa or yeasts dies by apoptosis, with clear benefits for the entire population. Recently, phosphatidylserine (PS) exposure and its recognition by a specific receptor (PSR) were implicated in the infectivity of amastigote forms of Leishmania, an obligatory vertebrate intramacrophagic parasite, showing for the first time that unicellular organisms use apoptotic features for the establishment and/or maintenance of infection. Here we focus on PS exposure in the outer leaflet of the plasma membrane - an early hallmark of apoptosis - and how it modulates the inflammatory activity of phagocytic cells. We also discuss the possible mechanisms by which PS exposure can define Leishmania survival inside host cells and the evolutionary implications of apoptosis at the unicellular level.Associação Brasileira de Divulgação Científica2005-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2005000600001Brazilian Journal of Medical and Biological Research v.38 n.6 2005reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/S0100-879X2005000600001info:eu-repo/semantics/openAccessWanderley,J.L.M.Benjamin,A.Real,F.Bonomo,A.Moreira,M.E.C.Barcinski,M.A.eng2005-09-28T00:00:00Zoai:scielo:S0100-879X2005000600001Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2005-09-28T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay |
title |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay |
spellingShingle |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay Wanderley,J.L.M. Apoptosis Phosphatidylserine Leishmania Phagocyte |
title_short |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay |
title_full |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay |
title_fullStr |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay |
title_full_unstemmed |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay |
title_sort |
Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay |
author |
Wanderley,J.L.M. |
author_facet |
Wanderley,J.L.M. Benjamin,A. Real,F. Bonomo,A. Moreira,M.E.C. Barcinski,M.A. |
author_role |
author |
author2 |
Benjamin,A. Real,F. Bonomo,A. Moreira,M.E.C. Barcinski,M.A. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Wanderley,J.L.M. Benjamin,A. Real,F. Bonomo,A. Moreira,M.E.C. Barcinski,M.A. |
dc.subject.por.fl_str_mv |
Apoptosis Phosphatidylserine Leishmania Phagocyte |
topic |
Apoptosis Phosphatidylserine Leishmania Phagocyte |
description |
Apoptosis is the most common phenotype observed when cells die through programmed cell death. The morphologic and biochemical changes that characterize apoptotic cells depend on the activation of a diverse set of genes. Apoptosis is essential for multicellular organisms since their development and homeostasis are dependent on extensive cell renewal. In fact, there is strong evidence for the correlation between the emergence of multicellular organisms and apoptosis during evolution. On the other hand, no obvious advantages can be envisaged for unicellular organisms to carry the complex machinery required for programmed cell death. However, accumulating evidence shows that free-living and parasitic protozoa as well as yeasts display apoptotic markers. This phenomenon has been related to altruistic behavior, when a subpopulation of protozoa or yeasts dies by apoptosis, with clear benefits for the entire population. Recently, phosphatidylserine (PS) exposure and its recognition by a specific receptor (PSR) were implicated in the infectivity of amastigote forms of Leishmania, an obligatory vertebrate intramacrophagic parasite, showing for the first time that unicellular organisms use apoptotic features for the establishment and/or maintenance of infection. Here we focus on PS exposure in the outer leaflet of the plasma membrane - an early hallmark of apoptosis - and how it modulates the inflammatory activity of phagocytic cells. We also discuss the possible mechanisms by which PS exposure can define Leishmania survival inside host cells and the evolutionary implications of apoptosis at the unicellular level. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2005000600001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2005000600001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-879X2005000600001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.38 n.6 2005 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302933824962560 |