High-impact exercise in rats prior to and during suspension can prevent bone loss
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2016000300605 |
Resumo: | High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension. |
id |
ABDC-1_bc7a8aeed19112dec0fb4ba91ea767af |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2016000300605 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
High-impact exercise in rats prior to and during suspension can prevent bone lossBoneMechanical propertiesBone mineral densityScanning electron microscopyJumpRatsHigh-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.Associação Brasileira de Divulgação Científica2016-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2016000300605Brazilian Journal of Medical and Biological Research v.49 n.3 2016reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431X20155086info:eu-repo/semantics/openAccessYanagihara,G.R.Paiva,A.G.Gasparini,G.A.Macedo,A.P.Frighetto,P.D.Volpon,J.B.Shimano,A.C.eng2016-02-18T00:00:00Zoai:scielo:S0100-879X2016000300605Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2016-02-18T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
High-impact exercise in rats prior to and during suspension can prevent bone loss |
title |
High-impact exercise in rats prior to and during suspension can prevent bone loss |
spellingShingle |
High-impact exercise in rats prior to and during suspension can prevent bone loss Yanagihara,G.R. Bone Mechanical properties Bone mineral density Scanning electron microscopy Jump Rats |
title_short |
High-impact exercise in rats prior to and during suspension can prevent bone loss |
title_full |
High-impact exercise in rats prior to and during suspension can prevent bone loss |
title_fullStr |
High-impact exercise in rats prior to and during suspension can prevent bone loss |
title_full_unstemmed |
High-impact exercise in rats prior to and during suspension can prevent bone loss |
title_sort |
High-impact exercise in rats prior to and during suspension can prevent bone loss |
author |
Yanagihara,G.R. |
author_facet |
Yanagihara,G.R. Paiva,A.G. Gasparini,G.A. Macedo,A.P. Frighetto,P.D. Volpon,J.B. Shimano,A.C. |
author_role |
author |
author2 |
Paiva,A.G. Gasparini,G.A. Macedo,A.P. Frighetto,P.D. Volpon,J.B. Shimano,A.C. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Yanagihara,G.R. Paiva,A.G. Gasparini,G.A. Macedo,A.P. Frighetto,P.D. Volpon,J.B. Shimano,A.C. |
dc.subject.por.fl_str_mv |
Bone Mechanical properties Bone mineral density Scanning electron microscopy Jump Rats |
topic |
Bone Mechanical properties Bone mineral density Scanning electron microscopy Jump Rats |
description |
High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2016000300605 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2016000300605 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1414-431X20155086 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.49 n.3 2016 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302944934625280 |