Parallel strategies for a multi-criteria GRASP algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Production |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132007000100006 |
Resumo: | This paper proposes different strategies of parallelizing a multi-criteria GRASP (Greedy Randomized Adaptive Search Problem) algorithm. The parallel GRASP algorithm is applied to the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem, a vector of costs is defined for each edge of the graph and the goal is to find all the efficient or Pareto optimal spanning trees (Pareto-optimal solutions). Each process finds a subset of efficient solutions. These subsets are joined using different strategies to obtain the final set of efficient solutions. The multi-criteria GRASP algorithm with the different parallel strategies are tested on complete graphs with n = 20, 30 and 50 nodes and r = 2 and 3 criteria. The computational results show that the proposed parallel algorithms reduce the execution time and the results obtained by the sequential version were improved. |
id |
ABEPRO-1_3e3638c5fe94a7880972465281b97c1b |
---|---|
oai_identifier_str |
oai:scielo:S0103-65132007000100006 |
network_acronym_str |
ABEPRO-1 |
network_name_str |
Production |
repository_id_str |
|
spelling |
Parallel strategies for a multi-criteria GRASP algorithmParallel GRASP algorithmmulti-criteria combinatorial optimizationminimum spanning treeThis paper proposes different strategies of parallelizing a multi-criteria GRASP (Greedy Randomized Adaptive Search Problem) algorithm. The parallel GRASP algorithm is applied to the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem, a vector of costs is defined for each edge of the graph and the goal is to find all the efficient or Pareto optimal spanning trees (Pareto-optimal solutions). Each process finds a subset of efficient solutions. These subsets are joined using different strategies to obtain the final set of efficient solutions. The multi-criteria GRASP algorithm with the different parallel strategies are tested on complete graphs with n = 20, 30 and 50 nodes and r = 2 and 3 criteria. The computational results show that the proposed parallel algorithms reduce the execution time and the results obtained by the sequential version were improved.Associação Brasileira de Engenharia de Produção2007-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132007000100006Production v.17 n.1 2007reponame:Productioninstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPRO10.1590/S0103-65132007000100006info:eu-repo/semantics/openAccessVianna,Dalessandro SoaresArroyo,José Elias ClaudioVieira,Pedro SampaioAzeredo,Thiago Ribeiro deeng2007-08-23T00:00:00Zoai:scielo:S0103-65132007000100006Revistahttps://www.scielo.br/j/prod/https://old.scielo.br/oai/scielo-oai.php||production@editoracubo.com.br1980-54110103-6513opendoar:2007-08-23T00:00Production - Associação Brasileira de Engenharia de Produção (ABEPRO)false |
dc.title.none.fl_str_mv |
Parallel strategies for a multi-criteria GRASP algorithm |
title |
Parallel strategies for a multi-criteria GRASP algorithm |
spellingShingle |
Parallel strategies for a multi-criteria GRASP algorithm Vianna,Dalessandro Soares Parallel GRASP algorithm multi-criteria combinatorial optimization minimum spanning tree |
title_short |
Parallel strategies for a multi-criteria GRASP algorithm |
title_full |
Parallel strategies for a multi-criteria GRASP algorithm |
title_fullStr |
Parallel strategies for a multi-criteria GRASP algorithm |
title_full_unstemmed |
Parallel strategies for a multi-criteria GRASP algorithm |
title_sort |
Parallel strategies for a multi-criteria GRASP algorithm |
author |
Vianna,Dalessandro Soares |
author_facet |
Vianna,Dalessandro Soares Arroyo,José Elias Claudio Vieira,Pedro Sampaio Azeredo,Thiago Ribeiro de |
author_role |
author |
author2 |
Arroyo,José Elias Claudio Vieira,Pedro Sampaio Azeredo,Thiago Ribeiro de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Vianna,Dalessandro Soares Arroyo,José Elias Claudio Vieira,Pedro Sampaio Azeredo,Thiago Ribeiro de |
dc.subject.por.fl_str_mv |
Parallel GRASP algorithm multi-criteria combinatorial optimization minimum spanning tree |
topic |
Parallel GRASP algorithm multi-criteria combinatorial optimization minimum spanning tree |
description |
This paper proposes different strategies of parallelizing a multi-criteria GRASP (Greedy Randomized Adaptive Search Problem) algorithm. The parallel GRASP algorithm is applied to the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem, a vector of costs is defined for each edge of the graph and the goal is to find all the efficient or Pareto optimal spanning trees (Pareto-optimal solutions). Each process finds a subset of efficient solutions. These subsets are joined using different strategies to obtain the final set of efficient solutions. The multi-criteria GRASP algorithm with the different parallel strategies are tested on complete graphs with n = 20, 30 and 50 nodes and r = 2 and 3 criteria. The computational results show that the proposed parallel algorithms reduce the execution time and the results obtained by the sequential version were improved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132007000100006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132007000100006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-65132007000100006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
dc.source.none.fl_str_mv |
Production v.17 n.1 2007 reponame:Production instname:Associação Brasileira de Engenharia de Produção (ABEPRO) instacron:ABEPRO |
instname_str |
Associação Brasileira de Engenharia de Produção (ABEPRO) |
instacron_str |
ABEPRO |
institution |
ABEPRO |
reponame_str |
Production |
collection |
Production |
repository.name.fl_str_mv |
Production - Associação Brasileira de Engenharia de Produção (ABEPRO) |
repository.mail.fl_str_mv |
||production@editoracubo.com.br |
_version_ |
1754213150127816704 |