New genetic algorithm approach for the min-degree constrained minimum spanning tree

Detalhes bibliográficos
Autor(a) principal: Salgueiro, R.
Data de Publicação: 2017
Outros Autores: de Almeida, A., Oliveira, O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/12779
Resumo: A novel approach is proposed for the NP-hard min-degree constrained minimum spanning tree (md-MST). The NP-hardness of the md-MST demands that heuristic approximations are used to tackle its intractability and thus an original genetic algorithm strategy is described using an improvement of the Martins-Souza heuristic to obtain a md-MST feasible solution, which is also presented. The genetic approach combines the latter improvement with three new approximations based on different chromosome representations for trees that employ diverse crossover operators. The genetic versions compare very favourably with the best known results in terms of both the run time and obtaining better quality solutions. In particular, new lower bounds are established for instances with higher dimensions.
id RCAP_560452d4b8fb9a1fc6fc541711f712dd
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/12779
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New genetic algorithm approach for the min-degree constrained minimum spanning treeCombinatorial optimizationDegree-constrained spanning treeGenetic algorithmHeuristicLower boundA novel approach is proposed for the NP-hard min-degree constrained minimum spanning tree (md-MST). The NP-hardness of the md-MST demands that heuristic approximations are used to tackle its intractability and thus an original genetic algorithm strategy is described using an improvement of the Martins-Souza heuristic to obtain a md-MST feasible solution, which is also presented. The genetic approach combines the latter improvement with three new approximations based on different chromosome representations for trees that employ diverse crossover operators. The genetic versions compare very favourably with the best known results in terms of both the run time and obtaining better quality solutions. In particular, new lower bounds are established for instances with higher dimensions.Elsevier2017-04-05T15:31:08Z2017-01-01T00:00:00Z20172019-03-21T16:42:42Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/12779eng0377-221710.1016/j.ejor.2016.11.007Salgueiro, R.de Almeida, A.Oliveira, O.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:35:19Zoai:repositorio.iscte-iul.pt:10071/12779Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:35:19Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New genetic algorithm approach for the min-degree constrained minimum spanning tree
title New genetic algorithm approach for the min-degree constrained minimum spanning tree
spellingShingle New genetic algorithm approach for the min-degree constrained minimum spanning tree
Salgueiro, R.
Combinatorial optimization
Degree-constrained spanning tree
Genetic algorithm
Heuristic
Lower bound
title_short New genetic algorithm approach for the min-degree constrained minimum spanning tree
title_full New genetic algorithm approach for the min-degree constrained minimum spanning tree
title_fullStr New genetic algorithm approach for the min-degree constrained minimum spanning tree
title_full_unstemmed New genetic algorithm approach for the min-degree constrained minimum spanning tree
title_sort New genetic algorithm approach for the min-degree constrained minimum spanning tree
author Salgueiro, R.
author_facet Salgueiro, R.
de Almeida, A.
Oliveira, O.
author_role author
author2 de Almeida, A.
Oliveira, O.
author2_role author
author
dc.contributor.author.fl_str_mv Salgueiro, R.
de Almeida, A.
Oliveira, O.
dc.subject.por.fl_str_mv Combinatorial optimization
Degree-constrained spanning tree
Genetic algorithm
Heuristic
Lower bound
topic Combinatorial optimization
Degree-constrained spanning tree
Genetic algorithm
Heuristic
Lower bound
description A novel approach is proposed for the NP-hard min-degree constrained minimum spanning tree (md-MST). The NP-hardness of the md-MST demands that heuristic approximations are used to tackle its intractability and thus an original genetic algorithm strategy is described using an improvement of the Martins-Souza heuristic to obtain a md-MST feasible solution, which is also presented. The genetic approach combines the latter improvement with three new approximations based on different chromosome representations for trees that employ diverse crossover operators. The genetic versions compare very favourably with the best known results in terms of both the run time and obtaining better quality solutions. In particular, new lower bounds are established for instances with higher dimensions.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-05T15:31:08Z
2017-01-01T00:00:00Z
2017
2019-03-21T16:42:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/12779
url http://hdl.handle.net/10071/12779
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0377-2217
10.1016/j.ejor.2016.11.007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546511270019072