Local search-based heuristics for the multiobjective multidimensional knapsack problem

Detalhes bibliográficos
Autor(a) principal: Vianna,Dalessandro Soares
Data de Publicação: 2013
Outros Autores: Vianna,Marcilene de Fátima Dianin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Production
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003
Resumo: In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times.
id ABEPRO-1_a897c32ce83398f837376feb20ce18e3
oai_identifier_str oai:scielo:S0103-65132013000300003
network_acronym_str ABEPRO-1
network_name_str Production
repository_id_str
spelling Local search-based heuristics for the multiobjective multidimensional knapsack problemMultiobjective multidimensional knapsack problemMultiobjective combinatorial optimizationGRASPILSIn real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times.Associação Brasileira de Engenharia de Produção2013-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003Production v.23 n.3 2013reponame:Productioninstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPRO10.1590/S0103-65132012005000081info:eu-repo/semantics/openAccessVianna,Dalessandro SoaresVianna,Marcilene de Fátima Dianineng2015-05-12T00:00:00Zoai:scielo:S0103-65132013000300003Revistahttps://www.scielo.br/j/prod/https://old.scielo.br/oai/scielo-oai.php||production@editoracubo.com.br1980-54110103-6513opendoar:2015-05-12T00:00Production - Associação Brasileira de Engenharia de Produção (ABEPRO)false
dc.title.none.fl_str_mv Local search-based heuristics for the multiobjective multidimensional knapsack problem
title Local search-based heuristics for the multiobjective multidimensional knapsack problem
spellingShingle Local search-based heuristics for the multiobjective multidimensional knapsack problem
Vianna,Dalessandro Soares
Multiobjective multidimensional knapsack problem
Multiobjective combinatorial optimization
GRASP
ILS
title_short Local search-based heuristics for the multiobjective multidimensional knapsack problem
title_full Local search-based heuristics for the multiobjective multidimensional knapsack problem
title_fullStr Local search-based heuristics for the multiobjective multidimensional knapsack problem
title_full_unstemmed Local search-based heuristics for the multiobjective multidimensional knapsack problem
title_sort Local search-based heuristics for the multiobjective multidimensional knapsack problem
author Vianna,Dalessandro Soares
author_facet Vianna,Dalessandro Soares
Vianna,Marcilene de Fátima Dianin
author_role author
author2 Vianna,Marcilene de Fátima Dianin
author2_role author
dc.contributor.author.fl_str_mv Vianna,Dalessandro Soares
Vianna,Marcilene de Fátima Dianin
dc.subject.por.fl_str_mv Multiobjective multidimensional knapsack problem
Multiobjective combinatorial optimization
GRASP
ILS
topic Multiobjective multidimensional knapsack problem
Multiobjective combinatorial optimization
GRASP
ILS
description In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-65132012005000081
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
dc.source.none.fl_str_mv Production v.23 n.3 2013
reponame:Production
instname:Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron:ABEPRO
instname_str Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron_str ABEPRO
institution ABEPRO
reponame_str Production
collection Production
repository.name.fl_str_mv Production - Associação Brasileira de Engenharia de Produção (ABEPRO)
repository.mail.fl_str_mv ||production@editoracubo.com.br
_version_ 1754213152366526464