Local search-based heuristics for the multiobjective multidimensional knapsack problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Production |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003 |
Resumo: | In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times. |
id |
ABEPRO-1_a897c32ce83398f837376feb20ce18e3 |
---|---|
oai_identifier_str |
oai:scielo:S0103-65132013000300003 |
network_acronym_str |
ABEPRO-1 |
network_name_str |
Production |
repository_id_str |
|
spelling |
Local search-based heuristics for the multiobjective multidimensional knapsack problemMultiobjective multidimensional knapsack problemMultiobjective combinatorial optimizationGRASPILSIn real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times.Associação Brasileira de Engenharia de Produção2013-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003Production v.23 n.3 2013reponame:Productioninstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPRO10.1590/S0103-65132012005000081info:eu-repo/semantics/openAccessVianna,Dalessandro SoaresVianna,Marcilene de Fátima Dianineng2015-05-12T00:00:00Zoai:scielo:S0103-65132013000300003Revistahttps://www.scielo.br/j/prod/https://old.scielo.br/oai/scielo-oai.php||production@editoracubo.com.br1980-54110103-6513opendoar:2015-05-12T00:00Production - Associação Brasileira de Engenharia de Produção (ABEPRO)false |
dc.title.none.fl_str_mv |
Local search-based heuristics for the multiobjective multidimensional knapsack problem |
title |
Local search-based heuristics for the multiobjective multidimensional knapsack problem |
spellingShingle |
Local search-based heuristics for the multiobjective multidimensional knapsack problem Vianna,Dalessandro Soares Multiobjective multidimensional knapsack problem Multiobjective combinatorial optimization GRASP ILS |
title_short |
Local search-based heuristics for the multiobjective multidimensional knapsack problem |
title_full |
Local search-based heuristics for the multiobjective multidimensional knapsack problem |
title_fullStr |
Local search-based heuristics for the multiobjective multidimensional knapsack problem |
title_full_unstemmed |
Local search-based heuristics for the multiobjective multidimensional knapsack problem |
title_sort |
Local search-based heuristics for the multiobjective multidimensional knapsack problem |
author |
Vianna,Dalessandro Soares |
author_facet |
Vianna,Dalessandro Soares Vianna,Marcilene de Fátima Dianin |
author_role |
author |
author2 |
Vianna,Marcilene de Fátima Dianin |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Vianna,Dalessandro Soares Vianna,Marcilene de Fátima Dianin |
dc.subject.por.fl_str_mv |
Multiobjective multidimensional knapsack problem Multiobjective combinatorial optimization GRASP ILS |
topic |
Multiobjective multidimensional knapsack problem Multiobjective combinatorial optimization GRASP ILS |
description |
In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132013000300003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-65132012005000081 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
dc.source.none.fl_str_mv |
Production v.23 n.3 2013 reponame:Production instname:Associação Brasileira de Engenharia de Produção (ABEPRO) instacron:ABEPRO |
instname_str |
Associação Brasileira de Engenharia de Produção (ABEPRO) |
instacron_str |
ABEPRO |
institution |
ABEPRO |
reponame_str |
Production |
collection |
Production |
repository.name.fl_str_mv |
Production - Associação Brasileira de Engenharia de Produção (ABEPRO) |
repository.mail.fl_str_mv |
||production@editoracubo.com.br |
_version_ |
1754213152366526464 |