Combining artificial neural networks and evolution to solve multiobjective knapsack problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/68630 |
Resumo: | The multiobjective knapsack problem (MOKP) is a combinatorial problem that arises in various applications, including resource allocation, computer science and finance. Evolutionary multiobjective optimization algorithms (EMOAs) can be effective in solving MOKPs. Though, they often face difficulties due to the loss of solution diversity and poor scalability. To address those issues, our study [2] proposes to generate candidate solutions by artificial neural networks. This is intended to provide intelligence to the search. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional search operators base on a binary crossover. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs. |
id |
RCAP_46f360bba0ef5c153fccfe29b345c46b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/68630 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Combining artificial neural networks and evolution to solve multiobjective knapsack problemsArtificial neural networksEvolutionary computingMultiobjective knapsack problemCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyThe multiobjective knapsack problem (MOKP) is a combinatorial problem that arises in various applications, including resource allocation, computer science and finance. Evolutionary multiobjective optimization algorithms (EMOAs) can be effective in solving MOKPs. Though, they often face difficulties due to the loss of solution diversity and poor scalability. To address those issues, our study [2] proposes to generate candidate solutions by artificial neural networks. This is intended to provide intelligence to the search. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional search operators base on a binary crossover. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.(undefined)Association for Computing Machinery (ACM)Universidade do MinhoDenysiuk, RomanGaspar-Cunha, A.Delbem, Alexandre C. B.20192019-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/68630eng978145036748610.1145/3319619.3326757https://dl.acm.org/doi/10.1145/3319619.3326757info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:28:00Zoai:repositorium.sdum.uminho.pt:1822/68630Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:28Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems |
title |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems |
spellingShingle |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems Denysiuk, Roman Artificial neural networks Evolutionary computing Multiobjective knapsack problem Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
title_short |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems |
title_full |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems |
title_fullStr |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems |
title_full_unstemmed |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems |
title_sort |
Combining artificial neural networks and evolution to solve multiobjective knapsack problems |
author |
Denysiuk, Roman |
author_facet |
Denysiuk, Roman Gaspar-Cunha, A. Delbem, Alexandre C. B. |
author_role |
author |
author2 |
Gaspar-Cunha, A. Delbem, Alexandre C. B. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Denysiuk, Roman Gaspar-Cunha, A. Delbem, Alexandre C. B. |
dc.subject.por.fl_str_mv |
Artificial neural networks Evolutionary computing Multiobjective knapsack problem Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
topic |
Artificial neural networks Evolutionary computing Multiobjective knapsack problem Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
description |
The multiobjective knapsack problem (MOKP) is a combinatorial problem that arises in various applications, including resource allocation, computer science and finance. Evolutionary multiobjective optimization algorithms (EMOAs) can be effective in solving MOKPs. Though, they often face difficulties due to the loss of solution diversity and poor scalability. To address those issues, our study [2] proposes to generate candidate solutions by artificial neural networks. This is intended to provide intelligence to the search. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional search operators base on a binary crossover. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/68630 |
url |
http://hdl.handle.net/1822/68630 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
9781450367486 10.1145/3319619.3326757 https://dl.acm.org/doi/10.1145/3319619.3326757 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Association for Computing Machinery (ACM) |
publisher.none.fl_str_mv |
Association for Computing Machinery (ACM) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544982223912960 |