Combining artificial neural networks and evolution to solve multiobjective knapsack problems

Detalhes bibliográficos
Autor(a) principal: Denysiuk, Roman
Data de Publicação: 2019
Outros Autores: Gaspar-Cunha, A., Delbem, Alexandre C. B.
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/68630
Resumo: The multiobjective knapsack problem (MOKP) is a combinatorial problem that arises in various applications, including resource allocation, computer science and finance. Evolutionary multiobjective optimization algorithms (EMOAs) can be effective in solving MOKPs. Though, they often face difficulties due to the loss of solution diversity and poor scalability. To address those issues, our study [2] proposes to generate candidate solutions by artificial neural networks. This is intended to provide intelligence to the search. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional search operators base on a binary crossover. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.
id RCAP_46f360bba0ef5c153fccfe29b345c46b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/68630
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Combining artificial neural networks and evolution to solve multiobjective knapsack problemsArtificial neural networksEvolutionary computingMultiobjective knapsack problemCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyThe multiobjective knapsack problem (MOKP) is a combinatorial problem that arises in various applications, including resource allocation, computer science and finance. Evolutionary multiobjective optimization algorithms (EMOAs) can be effective in solving MOKPs. Though, they often face difficulties due to the loss of solution diversity and poor scalability. To address those issues, our study [2] proposes to generate candidate solutions by artificial neural networks. This is intended to provide intelligence to the search. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional search operators base on a binary crossover. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.(undefined)Association for Computing Machinery (ACM)Universidade do MinhoDenysiuk, RomanGaspar-Cunha, A.Delbem, Alexandre C. B.20192019-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/68630eng978145036748610.1145/3319619.3326757https://dl.acm.org/doi/10.1145/3319619.3326757info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:28:00Zoai:repositorium.sdum.uminho.pt:1822/68630Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:28Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Combining artificial neural networks and evolution to solve multiobjective knapsack problems
title Combining artificial neural networks and evolution to solve multiobjective knapsack problems
spellingShingle Combining artificial neural networks and evolution to solve multiobjective knapsack problems
Denysiuk, Roman
Artificial neural networks
Evolutionary computing
Multiobjective knapsack problem
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Combining artificial neural networks and evolution to solve multiobjective knapsack problems
title_full Combining artificial neural networks and evolution to solve multiobjective knapsack problems
title_fullStr Combining artificial neural networks and evolution to solve multiobjective knapsack problems
title_full_unstemmed Combining artificial neural networks and evolution to solve multiobjective knapsack problems
title_sort Combining artificial neural networks and evolution to solve multiobjective knapsack problems
author Denysiuk, Roman
author_facet Denysiuk, Roman
Gaspar-Cunha, A.
Delbem, Alexandre C. B.
author_role author
author2 Gaspar-Cunha, A.
Delbem, Alexandre C. B.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Denysiuk, Roman
Gaspar-Cunha, A.
Delbem, Alexandre C. B.
dc.subject.por.fl_str_mv Artificial neural networks
Evolutionary computing
Multiobjective knapsack problem
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic Artificial neural networks
Evolutionary computing
Multiobjective knapsack problem
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description The multiobjective knapsack problem (MOKP) is a combinatorial problem that arises in various applications, including resource allocation, computer science and finance. Evolutionary multiobjective optimization algorithms (EMOAs) can be effective in solving MOKPs. Though, they often face difficulties due to the loss of solution diversity and poor scalability. To address those issues, our study [2] proposes to generate candidate solutions by artificial neural networks. This is intended to provide intelligence to the search. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional search operators base on a binary crossover. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/68630
url http://hdl.handle.net/1822/68630
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9781450367486
10.1145/3319619.3326757
https://dl.acm.org/doi/10.1145/3319619.3326757
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Association for Computing Machinery (ACM)
publisher.none.fl_str_mv Association for Computing Machinery (ACM)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544982223912960