A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Produção Online |
Texto Completo: | https://www.producaoonline.org.br/rpo/article/view/1941 |
Resumo: | With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB) and a statistical analysis software package (SPSS). The models output (predicted caustic concentration) were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible. |
id |
ABEPRO-2_3152267e3154330f5aaffcc7bf350946 |
---|---|
oai_identifier_str |
oai:ojs.emnuvens.com.br:article/1941 |
network_acronym_str |
ABEPRO-2 |
network_name_str |
Revista Produção Online |
repository_id_str |
|
spelling |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina productionEstudo comparativo do uso de redes neurais artificiais e regressão linear múltipla para a previsão da concentração cáustica em uma etapa do processo de fabricação de aluminaArtificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina.Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação.With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB) and a statistical analysis software package (SPSS). The models output (predicted caustic concentration) were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible.Para manterem-se competitivas as empresas otimizam seus processos continuamente, de maneira sustentável e reaproveitando os recursos naturais. As ferramentas de apoio a tomada de decisão são de extrema importância, principalmente quando tais ferramentas auxiliam na antecipação dos problemas operacionais, evitando custos, perdas de produtividade, acidentes de trabalho e ambientais. Este estudo tem foco no processo produtivo de alumina pelo método Bayer, na mensuração do teor cáustico da mistura de bauxita, que influencia diretamente na qualidade. A empresa obtém este resultado uma vez ao dia, por meio de análise laboratorial, devido aos elevados custos. A medida não é suficiente para tomada de decisão e antecipação das correções de problemas que possam evitar a ineficiência do processo, observado apenas no dia seguinte, quando ocorrer o recebimento do novo resultado. Propõe-se a previsão da concentração cáustica em tempo real, através da modelagem do processo por Regressão Linear Múltipla e Rede Neural Artificial. Tais modelos foram gerados através dos softwares SPSS e MATLAB. Os resultados foram comparados com base no erro entre a previsão da concentração do produto gerada pelos modelos, e a concentração real de saída obtidas de análise laboratorial. Concluiu-se que a técnica de Redes Neurais Artificiais desempenhou melhor que a Regressão Linear Múltipla. Os resultados mostraram a viabilidade do processo de análise imediata por meio da previsão, auxiliando assim a decisão da equipe de trabalho envolvida.Associação Brasileira de Engenharia de Produção2015-09-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfaudio/mpeghttps://www.producaoonline.org.br/rpo/article/view/194110.14488/1676-1901.v15i3.1941Revista Produção Online; Vol. 15 No. 3 (2015); 948-971Revista Produção Online; v. 15 n. 3 (2015); 948-9711676-1901reponame:Revista Produção Onlineinstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROporhttps://www.producaoonline.org.br/rpo/article/view/1941/1313https://www.producaoonline.org.br/rpo/article/view/1941/1312Copyright (c) 2015 Revista Produção Onlineinfo:eu-repo/semantics/openAccessRozza, Giovanni Leopoldoda Silva, Ruy GomesMüller, Sonia Isoldi Marty Gama2015-11-11T17:25:25Zoai:ojs.emnuvens.com.br:article/1941Revistahttp://producaoonline.org.br/rpoPUBhttps://www.producaoonline.org.br/rpo/oai||producaoonline@gmail.com1676-19011676-1901opendoar:2015-11-11T17:25:25Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)false |
dc.title.none.fl_str_mv |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production Estudo comparativo do uso de redes neurais artificiais e regressão linear múltipla para a previsão da concentração cáustica em uma etapa do processo de fabricação de alumina |
title |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production |
spellingShingle |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production Rozza, Giovanni Leopoldo Artificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina. Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação. |
title_short |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production |
title_full |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production |
title_fullStr |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production |
title_full_unstemmed |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production |
title_sort |
A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production |
author |
Rozza, Giovanni Leopoldo |
author_facet |
Rozza, Giovanni Leopoldo da Silva, Ruy Gomes Müller, Sonia Isoldi Marty Gama |
author_role |
author |
author2 |
da Silva, Ruy Gomes Müller, Sonia Isoldi Marty Gama |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rozza, Giovanni Leopoldo da Silva, Ruy Gomes Müller, Sonia Isoldi Marty Gama |
dc.subject.por.fl_str_mv |
Artificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina. Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação. |
topic |
Artificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina. Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação. |
description |
With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB) and a statistical analysis software package (SPSS). The models output (predicted caustic concentration) were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/1941 10.14488/1676-1901.v15i3.1941 |
url |
https://www.producaoonline.org.br/rpo/article/view/1941 |
identifier_str_mv |
10.14488/1676-1901.v15i3.1941 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/1941/1313 https://www.producaoonline.org.br/rpo/article/view/1941/1312 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 Revista Produção Online info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 Revista Produção Online |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf audio/mpeg |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
dc.source.none.fl_str_mv |
Revista Produção Online; Vol. 15 No. 3 (2015); 948-971 Revista Produção Online; v. 15 n. 3 (2015); 948-971 1676-1901 reponame:Revista Produção Online instname:Associação Brasileira de Engenharia de Produção (ABEPRO) instacron:ABEPRO |
instname_str |
Associação Brasileira de Engenharia de Produção (ABEPRO) |
instacron_str |
ABEPRO |
institution |
ABEPRO |
reponame_str |
Revista Produção Online |
collection |
Revista Produção Online |
repository.name.fl_str_mv |
Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO) |
repository.mail.fl_str_mv |
||producaoonline@gmail.com |
_version_ |
1761536949859909632 |