A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production

Detalhes bibliográficos
Autor(a) principal: Rozza, Giovanni Leopoldo
Data de Publicação: 2015
Outros Autores: da Silva, Ruy Gomes, Müller, Sonia Isoldi Marty Gama
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Produção Online
Texto Completo: https://www.producaoonline.org.br/rpo/article/view/1941
Resumo: With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB) and a statistical analysis software package (SPSS). The models output (predicted caustic concentration) were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible.
id ABEPRO-2_3152267e3154330f5aaffcc7bf350946
oai_identifier_str oai:ojs.emnuvens.com.br:article/1941
network_acronym_str ABEPRO-2
network_name_str Revista Produção Online
repository_id_str
spelling A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina productionEstudo comparativo do uso de redes neurais artificiais e regressão linear múltipla para a previsão da concentração cáustica em uma etapa do processo de fabricação de aluminaArtificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina.Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação.With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB) and a statistical analysis software package (SPSS). The models output (predicted caustic concentration) were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible.Para manterem-se competitivas as empresas otimizam seus processos continuamente, de maneira sustentável e reaproveitando os recursos naturais. As ferramentas de apoio a tomada de decisão são de extrema importância, principalmente quando tais ferramentas auxiliam na antecipação dos problemas operacionais, evitando custos, perdas de produtividade, acidentes de trabalho e ambientais. Este estudo tem foco no processo produtivo de alumina pelo método Bayer, na mensuração do teor cáustico da mistura de bauxita, que influencia diretamente na qualidade. A empresa obtém este resultado uma vez ao dia, por meio de análise laboratorial, devido aos elevados custos. A medida não é suficiente para tomada de decisão e antecipação das correções de problemas que possam evitar a ineficiência do processo, observado apenas no dia seguinte, quando ocorrer o recebimento do novo resultado. Propõe-se a previsão da concentração cáustica em tempo real, através da modelagem do processo por Regressão Linear Múltipla e Rede  Neural Artificial. Tais modelos foram gerados através dos softwares SPSS e MATLAB. Os resultados foram comparados com base no erro entre a previsão da concentração do produto gerada pelos modelos, e a concentração real de saída obtidas de análise laboratorial. Concluiu-se que a técnica de Redes Neurais Artificiais desempenhou melhor que a Regressão Linear Múltipla. Os resultados mostraram a viabilidade do processo de análise imediata por meio da previsão, auxiliando assim a decisão da equipe de trabalho envolvida.Associação Brasileira de Engenharia de Produção2015-09-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfaudio/mpeghttps://www.producaoonline.org.br/rpo/article/view/194110.14488/1676-1901.v15i3.1941Revista Produção Online; Vol. 15 No. 3 (2015); 948-971Revista Produção Online; v. 15 n. 3 (2015); 948-9711676-1901reponame:Revista Produção Onlineinstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROporhttps://www.producaoonline.org.br/rpo/article/view/1941/1313https://www.producaoonline.org.br/rpo/article/view/1941/1312Copyright (c) 2015 Revista Produção Onlineinfo:eu-repo/semantics/openAccessRozza, Giovanni Leopoldoda Silva, Ruy GomesMüller, Sonia Isoldi Marty Gama2015-11-11T17:25:25Zoai:ojs.emnuvens.com.br:article/1941Revistahttp://producaoonline.org.br/rpoPUBhttps://www.producaoonline.org.br/rpo/oai||producaoonline@gmail.com1676-19011676-1901opendoar:2015-11-11T17:25:25Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)false
dc.title.none.fl_str_mv A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
Estudo comparativo do uso de redes neurais artificiais e regressão linear múltipla para a previsão da concentração cáustica em uma etapa do processo de fabricação de alumina
title A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
spellingShingle A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
Rozza, Giovanni Leopoldo
Artificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina.
Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação.
title_short A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
title_full A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
title_fullStr A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
title_full_unstemmed A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
title_sort A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production
author Rozza, Giovanni Leopoldo
author_facet Rozza, Giovanni Leopoldo
da Silva, Ruy Gomes
Müller, Sonia Isoldi Marty Gama
author_role author
author2 da Silva, Ruy Gomes
Müller, Sonia Isoldi Marty Gama
author2_role author
author
dc.contributor.author.fl_str_mv Rozza, Giovanni Leopoldo
da Silva, Ruy Gomes
Müller, Sonia Isoldi Marty Gama
dc.subject.por.fl_str_mv Artificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina.
Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação.
topic Artificial Neural Networks. Multiple Linear Regression. Evaporation. Bayer Process. Alumina.
Redes Neurais Artificiais. Processo Bayer. Regressão Linear Múltipla. Alumina. Evaporação.
description With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB) and a statistical analysis software package (SPSS). The models output (predicted caustic concentration) were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.producaoonline.org.br/rpo/article/view/1941
10.14488/1676-1901.v15i3.1941
url https://www.producaoonline.org.br/rpo/article/view/1941
identifier_str_mv 10.14488/1676-1901.v15i3.1941
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.producaoonline.org.br/rpo/article/view/1941/1313
https://www.producaoonline.org.br/rpo/article/view/1941/1312
dc.rights.driver.fl_str_mv Copyright (c) 2015 Revista Produção Online
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2015 Revista Produção Online
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
audio/mpeg
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
dc.source.none.fl_str_mv Revista Produção Online; Vol. 15 No. 3 (2015); 948-971
Revista Produção Online; v. 15 n. 3 (2015); 948-971
1676-1901
reponame:Revista Produção Online
instname:Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron:ABEPRO
instname_str Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron_str ABEPRO
institution ABEPRO
reponame_str Revista Produção Online
collection Revista Produção Online
repository.name.fl_str_mv Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)
repository.mail.fl_str_mv ||producaoonline@gmail.com
_version_ 1761536949859909632