ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100073 |
Resumo: | ABSTRACT Polyhydroxyalkanoates (PHA) are biocompatible and biodegradable polyesters produced by prokaryotic microbes for energy storage and carbon reserve. These polymers are an option to diminish the massive impact caused by inadequate disposal of synthetic plastics. In this study, evaluation and characterization of PHA produced by Cupriavidus necator (IPT 026 and IPT 027) and Burkholderia cepacia (IPT 119 and IPT 400), using soybean as substrate, were carried out (soybean 15 g L-1, pH 7.0, 150 rpm, 72 hours). The highest polymer production was achieved using IPT 027 (0.84 ± 0.07 g L-1). All PHA produced showed the characteristic bands of polyester functional groups in the FTIR spectra. Polymers synthesized by Cupriavidus necator exhibited initial temperatures of degradation superior to 300oC and higher molecular weights than the ones produced by Burkholderia cepacia, which in turn, exhibited lower crystallinity (inferior to 30%), revealing high influence of the microorganism strain on PHA properties and production. |
id |
ABEQ-1_05cba175165570e034fbb425f5c7450d |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322019000100073 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATESoybeanBiosynthesisBiopolyesterCharacterizationABSTRACT Polyhydroxyalkanoates (PHA) are biocompatible and biodegradable polyesters produced by prokaryotic microbes for energy storage and carbon reserve. These polymers are an option to diminish the massive impact caused by inadequate disposal of synthetic plastics. In this study, evaluation and characterization of PHA produced by Cupriavidus necator (IPT 026 and IPT 027) and Burkholderia cepacia (IPT 119 and IPT 400), using soybean as substrate, were carried out (soybean 15 g L-1, pH 7.0, 150 rpm, 72 hours). The highest polymer production was achieved using IPT 027 (0.84 ± 0.07 g L-1). All PHA produced showed the characteristic bands of polyester functional groups in the FTIR spectra. Polymers synthesized by Cupriavidus necator exhibited initial temperatures of degradation superior to 300oC and higher molecular weights than the ones produced by Burkholderia cepacia, which in turn, exhibited lower crystallinity (inferior to 30%), revealing high influence of the microorganism strain on PHA properties and production.Brazilian Society of Chemical Engineering2019-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100073Brazilian Journal of Chemical Engineering v.36 n.1 2019reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20190361s20170267info:eu-repo/semantics/openAccessRodrigues,Plínio R.Nunes,Jéssica M. N.Lordelo,Luciana N.Druzian,Janice I.eng2019-07-10T00:00:00Zoai:scielo:S0104-66322019000100073Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-07-10T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE |
title |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE |
spellingShingle |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE Rodrigues,Plínio R. Soybean Biosynthesis Biopolyester Characterization |
title_short |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE |
title_full |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE |
title_fullStr |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE |
title_full_unstemmed |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE |
title_sort |
ASSESSMENT OF POLYHYDROXYALKANOATE SYNTHESIS IN SUBMERGED CULTIVATION OF Cupriavidus necator AND Burkholderia cepacia STRAINS USING SOYBEAN AS SUBSTRATE |
author |
Rodrigues,Plínio R. |
author_facet |
Rodrigues,Plínio R. Nunes,Jéssica M. N. Lordelo,Luciana N. Druzian,Janice I. |
author_role |
author |
author2 |
Nunes,Jéssica M. N. Lordelo,Luciana N. Druzian,Janice I. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rodrigues,Plínio R. Nunes,Jéssica M. N. Lordelo,Luciana N. Druzian,Janice I. |
dc.subject.por.fl_str_mv |
Soybean Biosynthesis Biopolyester Characterization |
topic |
Soybean Biosynthesis Biopolyester Characterization |
description |
ABSTRACT Polyhydroxyalkanoates (PHA) are biocompatible and biodegradable polyesters produced by prokaryotic microbes for energy storage and carbon reserve. These polymers are an option to diminish the massive impact caused by inadequate disposal of synthetic plastics. In this study, evaluation and characterization of PHA produced by Cupriavidus necator (IPT 026 and IPT 027) and Burkholderia cepacia (IPT 119 and IPT 400), using soybean as substrate, were carried out (soybean 15 g L-1, pH 7.0, 150 rpm, 72 hours). The highest polymer production was achieved using IPT 027 (0.84 ± 0.07 g L-1). All PHA produced showed the characteristic bands of polyester functional groups in the FTIR spectra. Polymers synthesized by Cupriavidus necator exhibited initial temperatures of degradation superior to 300oC and higher molecular weights than the ones produced by Burkholderia cepacia, which in turn, exhibited lower crystallinity (inferior to 30%), revealing high influence of the microorganism strain on PHA properties and production. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100073 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000100073 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0104-6632.20190361s20170267 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.36 n.1 2019 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213176304467968 |