THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH

Detalhes bibliográficos
Autor(a) principal: Almeida,R. A.
Data de Publicação: 2016
Outros Autores: Rezende,R. V. P., Cabral,V. F., Noriler,D., Meier,H. F., Cardozo-Filho,L., Cardoso,F. A. R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000100073
Resumo: Abstract The Supercritical Antisolvent (SAS) technique allows for the precipitation of drugs and biopolymers in nanometer size in a wide range of industrial applications, while guaranteeing the physical and chemical integrity of such materials. However, a suitable combination of operating parameters is needed for each type of solute. The knowledge of fluid dynamics behavior plays a key role in the search for such parameter combinations. This work presents a numerical study concerning the impact of operating temperature and pressure upon the physical properties and mixture dynamics within the SAS process, because in supercritical conditions the radius of the droplets formed exhibits great sensitivity to these variables. For the conditions analyzed, to account for the heat of mixture in the energy balance, subtle variations in the temperature fields were observed, with almost negligible pressure drop. From analyses of the intensity of segregation, there is an enhancement of the mixture on the molecular scale when the system is operated at higher pressure. This corroborates experimental observations from the literature, related to smaller diameters of particles under higher pressures. Hence, the model resulted in a versatile tool for selecting conditions that may promote a better control over the performance of the SAS process.
id ABEQ-1_1022b975f6b9a50e3d0e36acf3871561
oai_identifier_str oai:scielo:S0104-66322016000100073
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACHSupercritical AntisolventNanoparticlesMathematical modelingIntensity of segregationCFDAbstract The Supercritical Antisolvent (SAS) technique allows for the precipitation of drugs and biopolymers in nanometer size in a wide range of industrial applications, while guaranteeing the physical and chemical integrity of such materials. However, a suitable combination of operating parameters is needed for each type of solute. The knowledge of fluid dynamics behavior plays a key role in the search for such parameter combinations. This work presents a numerical study concerning the impact of operating temperature and pressure upon the physical properties and mixture dynamics within the SAS process, because in supercritical conditions the radius of the droplets formed exhibits great sensitivity to these variables. For the conditions analyzed, to account for the heat of mixture in the energy balance, subtle variations in the temperature fields were observed, with almost negligible pressure drop. From analyses of the intensity of segregation, there is an enhancement of the mixture on the molecular scale when the system is operated at higher pressure. This corroborates experimental observations from the literature, related to smaller diameters of particles under higher pressures. Hence, the model resulted in a versatile tool for selecting conditions that may promote a better control over the performance of the SAS process.Brazilian Society of Chemical Engineering2016-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000100073Brazilian Journal of Chemical Engineering v.33 n.1 2016reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20160331s20140016info:eu-repo/semantics/openAccessAlmeida,R. A.Rezende,R. V. P.Cabral,V. F.Noriler,D.Meier,H. F.Cardozo-Filho,L.Cardoso,F. A. R.eng2016-07-06T00:00:00Zoai:scielo:S0104-66322016000100073Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2016-07-06T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
title THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
spellingShingle THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
Almeida,R. A.
Supercritical Antisolvent
Nanoparticles
Mathematical modeling
Intensity of segregation
CFD
title_short THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
title_full THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
title_fullStr THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
title_full_unstemmed THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
title_sort THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
author Almeida,R. A.
author_facet Almeida,R. A.
Rezende,R. V. P.
Cabral,V. F.
Noriler,D.
Meier,H. F.
Cardozo-Filho,L.
Cardoso,F. A. R.
author_role author
author2 Rezende,R. V. P.
Cabral,V. F.
Noriler,D.
Meier,H. F.
Cardozo-Filho,L.
Cardoso,F. A. R.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Almeida,R. A.
Rezende,R. V. P.
Cabral,V. F.
Noriler,D.
Meier,H. F.
Cardozo-Filho,L.
Cardoso,F. A. R.
dc.subject.por.fl_str_mv Supercritical Antisolvent
Nanoparticles
Mathematical modeling
Intensity of segregation
CFD
topic Supercritical Antisolvent
Nanoparticles
Mathematical modeling
Intensity of segregation
CFD
description Abstract The Supercritical Antisolvent (SAS) technique allows for the precipitation of drugs and biopolymers in nanometer size in a wide range of industrial applications, while guaranteeing the physical and chemical integrity of such materials. However, a suitable combination of operating parameters is needed for each type of solute. The knowledge of fluid dynamics behavior plays a key role in the search for such parameter combinations. This work presents a numerical study concerning the impact of operating temperature and pressure upon the physical properties and mixture dynamics within the SAS process, because in supercritical conditions the radius of the droplets formed exhibits great sensitivity to these variables. For the conditions analyzed, to account for the heat of mixture in the energy balance, subtle variations in the temperature fields were observed, with almost negligible pressure drop. From analyses of the intensity of segregation, there is an enhancement of the mixture on the molecular scale when the system is operated at higher pressure. This corroborates experimental observations from the literature, related to smaller diameters of particles under higher pressures. Hence, the model resulted in a versatile tool for selecting conditions that may promote a better control over the performance of the SAS process.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000100073
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000100073
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20160331s20140016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.33 n.1 2016
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213175033593856