Fast-track evaluation of a compact chemically enhanced-trickling filter system

Detalhes bibliográficos
Autor(a) principal: Ahmed,S. A. R.
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000200002
Resumo: With the more Stringent legislations pertinent to the management of industrial effluents, it deemed necessary to develop an efficient compact, low cost treatment system that complies with applicable laws. Numerous versions of chemically enhanced - biological treatment schemes are commercially established. Chemically enhanced-trickling filter has been perceived as an efficient intervention scheme. This paper presents a fast-track approach for estimation of the minimum total annual treatment cost for the proposed Chemically Enhanced Primary Treatment/ Trickling Filter (CEPT-TF) system under given sets of conditions. The effect of different chemicals has been incorporated through empirical performance formulas. In addition, the influence of the type and characteristic of the media filter has been also addressed. The analysis of the results of the performance of the first stage of the treatment scheme tends to indicate that about 80 % of the biological pollution load can be removed by the upstream chemical treatment at the optimal dose. The optimal economic dose of iron salts ranges from 30 to 40 ppm according to unit capacity and characteristics of the influent. Further, the effect of biological filter media type on the total annual cost has been found to be relatively insignificant (6-16) %.
id ABEQ-1_52d622020b54fb9ee5c159741ec42469
oai_identifier_str oai:scielo:S0104-66322007000200002
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling Fast-track evaluation of a compact chemically enhanced-trickling filter systemChemically enhancedTrickling filterIndustrial wastewaterSimulationCostWith the more Stringent legislations pertinent to the management of industrial effluents, it deemed necessary to develop an efficient compact, low cost treatment system that complies with applicable laws. Numerous versions of chemically enhanced - biological treatment schemes are commercially established. Chemically enhanced-trickling filter has been perceived as an efficient intervention scheme. This paper presents a fast-track approach for estimation of the minimum total annual treatment cost for the proposed Chemically Enhanced Primary Treatment/ Trickling Filter (CEPT-TF) system under given sets of conditions. The effect of different chemicals has been incorporated through empirical performance formulas. In addition, the influence of the type and characteristic of the media filter has been also addressed. The analysis of the results of the performance of the first stage of the treatment scheme tends to indicate that about 80 % of the biological pollution load can be removed by the upstream chemical treatment at the optimal dose. The optimal economic dose of iron salts ranges from 30 to 40 ppm according to unit capacity and characteristics of the influent. Further, the effect of biological filter media type on the total annual cost has been found to be relatively insignificant (6-16) %.Brazilian Society of Chemical Engineering2007-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000200002Brazilian Journal of Chemical Engineering v.24 n.2 2007reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322007000200002info:eu-repo/semantics/openAccessAhmed,S. A. R.eng2007-07-23T00:00:00Zoai:scielo:S0104-66322007000200002Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2007-07-23T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv Fast-track evaluation of a compact chemically enhanced-trickling filter system
title Fast-track evaluation of a compact chemically enhanced-trickling filter system
spellingShingle Fast-track evaluation of a compact chemically enhanced-trickling filter system
Ahmed,S. A. R.
Chemically enhanced
Trickling filter
Industrial wastewater
Simulation
Cost
title_short Fast-track evaluation of a compact chemically enhanced-trickling filter system
title_full Fast-track evaluation of a compact chemically enhanced-trickling filter system
title_fullStr Fast-track evaluation of a compact chemically enhanced-trickling filter system
title_full_unstemmed Fast-track evaluation of a compact chemically enhanced-trickling filter system
title_sort Fast-track evaluation of a compact chemically enhanced-trickling filter system
author Ahmed,S. A. R.
author_facet Ahmed,S. A. R.
author_role author
dc.contributor.author.fl_str_mv Ahmed,S. A. R.
dc.subject.por.fl_str_mv Chemically enhanced
Trickling filter
Industrial wastewater
Simulation
Cost
topic Chemically enhanced
Trickling filter
Industrial wastewater
Simulation
Cost
description With the more Stringent legislations pertinent to the management of industrial effluents, it deemed necessary to develop an efficient compact, low cost treatment system that complies with applicable laws. Numerous versions of chemically enhanced - biological treatment schemes are commercially established. Chemically enhanced-trickling filter has been perceived as an efficient intervention scheme. This paper presents a fast-track approach for estimation of the minimum total annual treatment cost for the proposed Chemically Enhanced Primary Treatment/ Trickling Filter (CEPT-TF) system under given sets of conditions. The effect of different chemicals has been incorporated through empirical performance formulas. In addition, the influence of the type and characteristic of the media filter has been also addressed. The analysis of the results of the performance of the first stage of the treatment scheme tends to indicate that about 80 % of the biological pollution load can be removed by the upstream chemical treatment at the optimal dose. The optimal economic dose of iron salts ranges from 30 to 40 ppm according to unit capacity and characteristics of the influent. Further, the effect of biological filter media type on the total annual cost has been found to be relatively insignificant (6-16) %.
publishDate 2007
dc.date.none.fl_str_mv 2007-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000200002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000200002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322007000200002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.24 n.2 2007
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213172288421888