LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING

Detalhes bibliográficos
Autor(a) principal: Cavalcanti,Rodrigo N.
Data de Publicação: 2018
Outros Autores: Oliveira,Mariana B., Meirelles,Antonio J. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200819
Resumo: Abstract In this study, the liquid-liquid equilibrium (LLE) data of systems containing ethyl linoleate/oleate/palmitate/laurate, ethanol and glycerol at temperatures ranging from 323.15 to 353.15 K were used to evaluate the performance of the NRTL, UNIFAC, Cubic-Plus-Association Equation of State (CPA EoS), and artificial neural network (ANN) models. The systems evaluated correspond to the most important components formed at the end of the ethanolysis reaction of soybean, palm and coconut oils. The temperature range selected is very important for heterogeneous catalysts, especially for high-pressure systems. The accuracy of the models was evaluated by average global deviation. UNIFAC, UNIFAC-LLE and CPA EoS models showed lower accuracy with deviations of 10.1, 8.01 and 5.95%, respectively. In spite of this predictive limitation, these models show high extrapolation capability for the description of LLE behavior when few experimental data are available in the literature. The ANN model shows the best agreement between experimental and predicted data with an average deviation of 1.12%. In this regard, ANN is offered in this work as an alternative to equations of state and activity coefficient models to be used in a more reliable and less cumbersome way for process simulators of biodiesel production and separation equipment design.
id ABEQ-1_6c01617ebba2a9015b10c2f9bb52d43c
oai_identifier_str oai:scielo:S0104-66322018000200819
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELINGBiodiesel systems modelingLiquid-liquid equilibriumArtificial neural networkCubic-Plus-Association Equation of StateEthylic biodieselAbstract In this study, the liquid-liquid equilibrium (LLE) data of systems containing ethyl linoleate/oleate/palmitate/laurate, ethanol and glycerol at temperatures ranging from 323.15 to 353.15 K were used to evaluate the performance of the NRTL, UNIFAC, Cubic-Plus-Association Equation of State (CPA EoS), and artificial neural network (ANN) models. The systems evaluated correspond to the most important components formed at the end of the ethanolysis reaction of soybean, palm and coconut oils. The temperature range selected is very important for heterogeneous catalysts, especially for high-pressure systems. The accuracy of the models was evaluated by average global deviation. UNIFAC, UNIFAC-LLE and CPA EoS models showed lower accuracy with deviations of 10.1, 8.01 and 5.95%, respectively. In spite of this predictive limitation, these models show high extrapolation capability for the description of LLE behavior when few experimental data are available in the literature. The ANN model shows the best agreement between experimental and predicted data with an average deviation of 1.12%. In this regard, ANN is offered in this work as an alternative to equations of state and activity coefficient models to be used in a more reliable and less cumbersome way for process simulators of biodiesel production and separation equipment design.Brazilian Society of Chemical Engineering2018-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200819Brazilian Journal of Chemical Engineering v.35 n.2 2018reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20180352s20160267info:eu-repo/semantics/openAccessCavalcanti,Rodrigo N.Oliveira,Mariana B.Meirelles,Antonio J. A.eng2018-09-17T00:00:00Zoai:scielo:S0104-66322018000200819Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2018-09-17T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
title LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
spellingShingle LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
Cavalcanti,Rodrigo N.
Biodiesel systems modeling
Liquid-liquid equilibrium
Artificial neural network
Cubic-Plus-Association Equation of State
Ethylic biodiesel
title_short LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
title_full LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
title_fullStr LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
title_full_unstemmed LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
title_sort LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING
author Cavalcanti,Rodrigo N.
author_facet Cavalcanti,Rodrigo N.
Oliveira,Mariana B.
Meirelles,Antonio J. A.
author_role author
author2 Oliveira,Mariana B.
Meirelles,Antonio J. A.
author2_role author
author
dc.contributor.author.fl_str_mv Cavalcanti,Rodrigo N.
Oliveira,Mariana B.
Meirelles,Antonio J. A.
dc.subject.por.fl_str_mv Biodiesel systems modeling
Liquid-liquid equilibrium
Artificial neural network
Cubic-Plus-Association Equation of State
Ethylic biodiesel
topic Biodiesel systems modeling
Liquid-liquid equilibrium
Artificial neural network
Cubic-Plus-Association Equation of State
Ethylic biodiesel
description Abstract In this study, the liquid-liquid equilibrium (LLE) data of systems containing ethyl linoleate/oleate/palmitate/laurate, ethanol and glycerol at temperatures ranging from 323.15 to 353.15 K were used to evaluate the performance of the NRTL, UNIFAC, Cubic-Plus-Association Equation of State (CPA EoS), and artificial neural network (ANN) models. The systems evaluated correspond to the most important components formed at the end of the ethanolysis reaction of soybean, palm and coconut oils. The temperature range selected is very important for heterogeneous catalysts, especially for high-pressure systems. The accuracy of the models was evaluated by average global deviation. UNIFAC, UNIFAC-LLE and CPA EoS models showed lower accuracy with deviations of 10.1, 8.01 and 5.95%, respectively. In spite of this predictive limitation, these models show high extrapolation capability for the description of LLE behavior when few experimental data are available in the literature. The ANN model shows the best agreement between experimental and predicted data with an average deviation of 1.12%. In this regard, ANN is offered in this work as an alternative to equations of state and activity coefficient models to be used in a more reliable and less cumbersome way for process simulators of biodiesel production and separation equipment design.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200819
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200819
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20180352s20160267
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.35 n.2 2018
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213175957389312